Exam 4 Math 1112 sec. 54 Spring 2019

Name: \qquad
Your signature (required) confirms that you agree to practice academic honesty.
Signature:

Problem	Points
1	
2	
3	
4	
5	
6	
7	
Total	

INSTRUCTIONS: There are 7 problems; point values are listed with the problems. No use of notes, books or calculators is allowed. Illicit use of a calculator, smart phone, tablet, device that runs apps, or notes will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. To receive full credit, answers must be clear, complete, and written using proper notation.

You may assume the following IDs. $\quad \cos (u+v)=\cos u \cos v-\sin u \sin v$

$$
\begin{aligned}
\sin (u+v) & =\sin u \cos v+\sin v \cos u \\
\tan (u+v) & =\frac{\tan u+\tan v}{1-\tan u \tan v} \\
\cos \left(\frac{x}{2}\right) & = \pm \sqrt{\frac{1+\cos x}{2}} \\
\sin \left(\frac{x}{2}\right) & = \pm \sqrt{\frac{1-\cos x}{2}}
\end{aligned}
$$

1. (10 points) One of the Pythagorean Identities is $\tan ^{2} x+1=\sec ^{2} x$. State the other two.

$$
\begin{aligned}
& \text { One is } \sin ^{2} x+\cos ^{2} x=1 \\
& \text { the other is } \quad \cot ^{2} x+1=\csc ^{2} x
\end{aligned}
$$

2. (12 points, 6 each) Verify each trigonometric identity. (Your steps should be clear and correct.)
(a) $\cos x+\cos x \tan ^{2} x=\sec x \quad$ From the left side

$$
\begin{array}{rlrl}
\cos x+\cos x \tan ^{2} x & =\cos x\left(1+\tan ^{2} x\right) & & \text { factor } \\
& =\cos x\left(\sec ^{2} x\right) & & \text { Prthasoran ID } \\
& =\cos x \sec x \sec x & & \\
& =1 \cdot \sec x & & \text { reciprocal ID } \\
& =\sec x &
\end{array}
$$

(b) $\frac{\cot \theta}{\csc \theta-1}=\frac{\csc \theta+1}{\cot \theta} \quad$ From the left

$$
\begin{aligned}
\frac{\cot \theta}{\csc \theta-1} & =\left(\frac{\cot \theta}{\csc \theta-1}\right)\left(\frac{\operatorname{cyc} \theta+1}{\csc \theta+1}\right) \text { Alsetssa } \\
& =\frac{\cot \theta(\csc \theta+1)}{\csc ^{2} \theta-1} \\
& =\frac{\cot \theta(\csc \theta+1)}{\cot 2 \theta} \quad \text { Pythas.sean ID } \\
& =\frac{\csc \theta+1}{\cot \theta} \quad \text { algebra }
\end{aligned}
$$

3. (8 points) Find an algebraic expression equal to $\tan \left(\sin ^{-1} V\right)=\frac{V}{\sqrt{1-V^{2}}}$
Lot $\theta=\sin ^{-1}$

$$
\begin{aligned}
& -\frac{\pi}{2}<\theta<\frac{\pi}{2} \\
& \text { and } \sin \theta=V
\end{aligned}
$$

4. (20 points, 5 each) Evaluate each exactly. Use appropriate sum, difference, or half angle identities that were provided. (Do not leave complex fractions in your answers; it is not necessary to rationalize.)
(a) $\cos \left(\frac{\pi}{8}\right)=\cos \left(\frac{\frac{\pi}{4}}{2}\right)=\sqrt{\frac{1+\cos \pi / 4}{2}}=\sqrt{\frac{1+\frac{1}{\sqrt{2}}}{2}}=\sqrt{\frac{\sqrt{2}+1}{2 \sqrt{2}}}$

$$
\begin{aligned}
& \frac{\pi}{8} \text { is acute } \\
& \cos \frac{\pi}{8}>0
\end{aligned}
$$

(b) $\sin \left(20^{\circ}\right) \cos \left(25^{\circ}\right)+\sin \left(25^{\circ}\right) \cos \left(20^{\circ}\right)$

$$
=\sin \left(20^{\circ}+25^{\circ}\right)=\sin \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}
$$

(c)

$$
\begin{aligned}
\sin \left(75^{\circ}\right)=\sin \left(30^{\circ}+45^{\circ}\right) & =\sin 30^{\circ} \cos 45^{\circ}+\sin 45^{\circ} \cos 30^{\circ} \\
& =\frac{1}{2}\left(\frac{1}{\sqrt{2}}\right)+\frac{1}{\sqrt{2}}\left(\frac{\sqrt{3}}{2}\right)=\frac{1+\sqrt{3}}{2 \sqrt{2}}
\end{aligned}
$$

(d) $\frac{\tan \left(10^{\circ}\right)+\tan \left(35^{\circ}\right)}{1-\tan \left(10^{\circ}\right) \tan \left(35^{\circ}\right)}=\tan \left(10^{\circ}+35^{\circ}\right)=\tan \left(45^{\circ}\right)=1$
5. (20 points) Suppose x and y are acute angles such that $\quad \cos x=\frac{1}{4} \quad$ and $\quad \tan y=6$.

Evaluate each of the following. (Your answers should be exact and supported by your work. Blank space is provided so that you can create a diagram.)

$$
\begin{aligned}
& \cos y=\frac{1}{\sqrt{37}} \\
& \sin y=\frac{6}{\sqrt{37}}
\end{aligned}
$$

$$
\begin{aligned}
& \cos x=\frac{1}{4} \\
& \sin x=\frac{\sqrt{15}}{4} \\
& \tan x=\sqrt{15}
\end{aligned}
$$

(a) $\cos (x-y)=\cos x \cos y+\sin x \sin y=\frac{1}{4} \frac{1}{\sqrt{37}}+\frac{\sqrt{15}}{4} \frac{6}{\sqrt{37}}$

$$
=\frac{1+6 \sqrt{15}}{4 \sqrt{37}}
$$

(b) $\sin (x+y)=\sin x \cos y+\sin y \cos x$

$$
=\frac{\sqrt{15}}{4} \frac{1}{\sqrt{37}}+\frac{6}{\sqrt{37}} \frac{1}{4}=\frac{\sqrt{15}+6}{4 \sqrt{37}}
$$

(c) $\sin \left(\frac{x}{2}\right)=\sqrt{\frac{1-\operatorname{cor} x}{2}}=\sqrt{\frac{1-1 / 4}{2}}=\sqrt{\frac{4-1}{8}}=\sqrt{\frac{3}{8}}$
$\frac{x}{2}$
is
conte
(d) $\tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y}=\frac{\sqrt{15}+6}{1-6 \sqrt{15}}$
6. (15 points) Find all of the solutions of the trigonometric equation.

$$
2 \sin x-1=0 \quad \Rightarrow \quad \sin x=\frac{1}{2}
$$

There are two solutions in $[0,2 \pi)$ in quads I and II.

$$
x=\frac{\pi}{6} \quad \text { or } \quad x=\frac{5 \pi}{6}
$$

All possible solutions are given by

$$
\begin{aligned}
& x=\frac{\pi}{6}+2 \pi h \quad \text { or } \\
& x=\frac{5 \pi}{6}+2 \pi k \text { for } k=0, \pm 1, \pm 2, \ldots
\end{aligned}
$$

7. (15 points) Find all solutions in the interval $[0,2 \pi$) of the trigonometric equation.

$$
\begin{gathered}
2 \cos ^{2} \theta-\cos \theta-1=0 \quad \text { Factor }
\end{gathered} \quad(2 \cos \theta+1)(\cos \theta-1)=0
$$

The first has 2 solutions, one each in 9 vadrants II and IIS,

$$
\theta=\frac{2 \pi}{3} \quad \text { ar } \quad \theta=\frac{4 \pi}{3}
$$

The second has one solution $\theta=0$.
The solution set is $\left\{0, \frac{2 \pi}{3}, \frac{4 \pi}{3}\right\}$.

