Exam 4 Math 1113 sec. 51 Fall 2018

Name:
Solutions
Your signature (required) confirms that you agree to practice academic honesty.
Signature:

Problem	Points
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	

INSTRUCTIONS: There are 10 problems worth 10 points each. No calculator use is allowed on any part of this exam. There are no notes, or books allowed. Illicit use of a calculator, smart phone, tablet, device that runs apps, or notes will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. To receive full credit, answers must be clear, complete, and written using proper notation.

You may assume the following six IDs. $\quad \cos (u \pm v)=\cos u \cos v \mp \sin u \sin v$ Choose the signs with same placements. $\quad \sin (u \pm v)=\sin u \cos v \pm \sin v \cos u$

$$
\tan (u \pm v)=\frac{\tan u \pm \tan v}{1 \mp \tan u \tan v}
$$

1. Complete the table of trigonometric values.

$\theta=$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\sqrt{3} / 2$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	undefind

2. Evaluate each expression exactly.
(a) $\cos \left(\frac{4 \pi}{3}\right)=\frac{-1}{2}$
(b) $\tan \left(\frac{5 \pi}{4}\right)=1$ $\theta^{\prime}=\frac{\pi}{3}$ quod III $\theta^{\prime}=\pi / n$ quod III
(c) $\csc \left(\frac{5 \pi}{6}\right)=2$
(d) $\cot \left(-\frac{\pi}{3}\right)=-\frac{1}{\sqrt{3}}$ $\theta^{\prime}=\frac{\pi}{6} \quad$ quad II
(e) $\sec \left(\frac{\pi}{4}\right)=\sqrt{2}$
3. Complete the table. Use interval notation.

Function	Domain	Range
$y=\sin ^{-1} x$	$[-1]]$,	$[-\pi / 2, \pi / 2]$
$y=\cos ^{-1} x$	$[-1,1]$	$[0, \pi]$
$y=\tan ^{-1} x$	$(-\infty, \infty)$	$(-\pi / 2, \pi / 2)$

4. Evaluate each expression exactly. Recall that certain formulas have been provided on the first page of this exam.
(a) $\sin \left(65^{\circ}\right) \cos \left(25^{\circ}\right)+\sin \left(65^{\circ}\right) \cos \left(25^{\circ}\right)=\sin \left(65^{\circ}+25^{\circ}\right)=\sin \left(90^{\circ}\right)=1$
(b) $\cos \left(50^{\circ}\right) \cos \left(5^{\circ}\right)+\sin \left(50^{\circ}\right) \sin \left(5^{\circ}\right)=\cos \left(50^{\circ}-5^{\circ}\right)=\cos \left(45^{\circ}\right)=\frac{1}{\sqrt{2}}$
(c) $\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{6}$
(d) $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{3}$
(e) $\tan \left(\frac{\pi}{12}\right)$ (hint: $\frac{1}{12}=\frac{1}{3}-\frac{1}{4}$)

$$
=\frac{\tan \left(\frac{\pi}{3}\right)-\tan (\pi / 4)}{\left.1+\tan \frac{\pi}{3} \cdot \tan \pi\right)_{4}}=\frac{\sqrt{3}-1}{1+\sqrt{3}}
$$

5. Plot at least two full periods of each function on the grids provided.
(a) $f(x)=\sin x$
(b) $g(x)=\cos x$
(c) $h(x)=\tan x$

6. Suppose $\frac{3 \pi}{2}<\theta<2 \pi$, and $\sec \theta=\frac{3}{2}$. Also suppose that $0<\phi<\frac{\pi}{2}$ and $\sin \phi=\frac{1}{4}$. Draw a representative diagram for each angle from which trigonometric values can be deduced.

Evaluate each expression exactly. Your answers should be simplified, but it is not necessary to rationalize denominators.
(a) $\cos (\phi-\theta)=\cos \phi \cos \theta+\sin \phi \sin \theta=\frac{\sqrt{15}}{4} \cdot \frac{2}{3}+\frac{1}{4}\left(\frac{-\sqrt{5}}{3}\right)$

$$
=\frac{2 \sqrt{15}-\sqrt{5}}{12}
$$

(b) $\csc (\theta+\phi)=\frac{12}{2-\sqrt{75}}$

$$
\begin{aligned}
\sin (\theta+\phi)=\sin \theta \cos \phi+\sin \phi \cos \theta & =\frac{-\sqrt{5}}{3}\left(\frac{\sqrt{15}}{4}\right)+\frac{1}{4}\left(\frac{2}{3}\right) \\
& =\frac{2-\sqrt{75}}{12}
\end{aligned}
$$

7. For each function, identify the amplitude A, period T, phase shift ϕ (with direction), and vertical shift V (with direction). Write none if a function does not have a specific characteristic.
(a) $y=2-\frac{1}{3} \sin \left(x-\frac{\pi}{4}\right)$

$$
A=\frac{1}{3}, \quad T=2 \pi, \quad \phi=\xrightarrow{\pi / 4 \text { right }} \quad V=2 \text { up }
$$

(b) $f(x)=4 \cos \left(\frac{\pi x}{4}\right)-2$

$$
\begin{array}{r}
A=\frac{4}{}, \quad T=\frac{8}{\pi / 4}=8
\end{array}
$$

8. The hour hand on a certain clock is 5 inches long. (Provide exact answers with the factor π if necessary.)
(a) Determine the distance traversed by the tip of the hour hand over the course of 7 hours. (in inches)

$$
\text { The distance } s=r \theta \quad r=s \text { in } \quad \theta=\frac{7}{12}(2 \pi)=\frac{7 \pi}{6}
$$

So

$$
S=(\sin)\left(\frac{7 \pi}{6}\right)=\frac{35 \pi}{6} \quad \text { in }
$$

(b) Find the area of the sector swept out by the hour hand during this 7 hours. (in square inches)

$$
\begin{array}{r}
\text { The area } A=\frac{1}{2} r^{2} \theta \text {. Using } r \text { and } \theta \\
\qquad A=\frac{1}{2}(\sin)^{2}\left(\frac{7 \pi}{6}\right)=\frac{175 \pi}{12} \text { in }^{2}
\end{array}
$$

9. Evaluate each expression exactly. Your answers should be justified by a diagram or other demonstration of your process.
(a) $\sin \left(\tan ^{-1} 6\right)$

$$
\begin{aligned}
& \text { Let } \\
& \theta=\tan ^{-1} 6
\end{aligned}
$$

$$
=\frac{6}{\sqrt{37}}
$$

 diagson
(b) $\cot \left(\sin ^{-1}-\frac{1}{5}\right)=-\sqrt{24}$

10. Prove each identity.
(a) $\sec ^{4} x-\tan ^{4} x=\sec ^{2} x+\tan ^{2} x$

From the left

$$
\begin{aligned}
\sec ^{4} x-\tan ^{4} x & =\left(\sec ^{2} x-\tan ^{2} x\right)\left(\sec ^{2} x+\tan ^{2} x\right) \\
& =1 \cdot\left(\sec ^{2} x+\tan ^{2} x\right) \\
& =\sec ^{2} x+\tan ^{2} x \quad \text { as required }
\end{aligned}
$$

(b) $\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta}=2 \sec ^{2} \theta$

From the left

$$
\begin{aligned}
\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta} & =\frac{1-\sin \theta+1+\sin \theta}{(1+\sin \theta)(1-\sin \theta)} \\
& =\frac{2}{1-\sin ^{2} \theta} \\
& =\frac{2}{\cos ^{2} \theta}
\end{aligned}
$$

$$
=2 \sec ^{2} \theta \text { as expected }
$$

