Exam 4 Math 1190 sec. 51

Summer 2017

Name: \qquad
Your signature (required) confirms that you agree to practice academic honesty.

Signature: \qquad

Problem	Points
1	
2	
3	
4	
5	
6	
7	

INSTRUCTIONS: You have 60 minutes to complete this exam.
There are 7 problems. The point values are listed with the problems.
There are no notes, or books allowed and no calculator is allowed. Illicit use of a calculator, smart phone, tablet, device that runs apps, or hand written notes will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. To receive full credit, answers must be clear, complete, justified, and written using proper notation.

The following may or may not be useful:

$$
\begin{gathered}
\sin 0=0, \quad \cos 0=1, \quad \tan 0=0 \\
\sin \frac{\pi}{6}=\frac{1}{2}, \quad \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}, \quad \tan \frac{\pi}{6}=\frac{1}{\sqrt{3}} \\
\sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}, \quad \cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}, \quad \tan \frac{\pi}{4}=1 \\
\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}, \quad \cos \frac{\pi}{3}=\frac{1}{2}, \quad \tan \frac{\pi}{3}=\sqrt{3}
\end{gathered}
$$

(1) (25 points, 5 each) Evaluate each definite integral. (Do not leave compound fractions in any of your answers.)
(a) $\int_{1}^{e} \frac{1}{x} d x=\left.\ln |x|\right|_{1} ^{e}=\ln |e|-\ln |1|=1-0=1$
(b) $\int_{1}^{4} \frac{3}{2} x^{1 / 2} d x=\left.x^{3 / 2}\right|_{1} ^{4}=4^{3 / 2}-1^{3 / 2}=8-1=7$
(c) $\int_{0}^{\frac{\pi}{2}} \sin x d x=-\left.\operatorname{Cos} x\right|_{0} ^{\pi / 2}=-\operatorname{Cos} \pi / 2-(-\cos 0)$

$$
=0-(-1)=1
$$

(d) $\int_{1}^{2} e^{x} d x=\left.e^{x}\right|_{1} ^{2}=e^{2}-e^{1}=e^{2}-e$
(e) $\int_{0}^{\frac{\pi}{3}} \sec x \tan x d x=\left.\sec x\right|_{0} ^{\pi / 3}=\sec \pi / 3-\sec 0=2-1=1$
(2) (20 points, 5 each) Evaluate each definite integral. Simplify to the extent possible.
(a)

$$
\begin{aligned}
\int_{1}^{2} 3 x(x+2) d x & =\int_{1}^{2}\left(3 x^{2}+6 x\right) d x \\
& =x^{3}+\left.3 x^{2}\right|_{1} ^{2}=2^{3}+3\left(2^{2}\right)-\left(1^{3}+3(1)^{2}\right)
\end{aligned}=8+12-4
$$

(b)

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{4}}\left(\sqrt{2} \cos \theta+\sec ^{2} \theta\right) d \theta=\sqrt{2} \sin \theta+\left.\tan \theta\right|_{0} ^{\pi / 4} \\
&=\sqrt{2} \sin \frac{\pi}{4}+\tan \frac{\pi}{4}-(\sqrt{2} \sin 0+\tan 0) \\
&=\sqrt{2}\left(\frac{1}{\sqrt{2}}\right)+1-0=2
\end{aligned}
$$

(c)

$$
\begin{aligned}
\int_{1}^{3} \frac{4 t^{2}-3 t+2}{t} d t & =\int_{1}^{3}\left(4 t-3+\frac{2}{t}\right) d t=2 t^{2}-3 t+\left.2 \ln |t|\right|_{1} ^{3} \\
& =2\left(3^{2}\right)-3(3)+2 \ln |3|-\left(2\left(1^{2}\right)-3 \cdot|+2 \ln |\right) \\
& =18-9+2 \ln 3-(-1+0) \\
& =10+2 \ln 3
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \int_{1}^{\sqrt{3}} \frac{12}{1+x^{2}} d x=\left.12 \tan ^{-1} x\right|_{1} ^{\sqrt{3}}=12 \tan ^{-1} \sqrt{3}-12 \tan ^{-1} 1 \\
& =12\left(\frac{\pi}{3}\right)-12\left(\frac{\pi}{4}\right)=4 \pi-3 \pi=\pi
\end{aligned}
$$

(3) (10 points) A spherical balloon is being inflated. Air is being pumped in at a constant rate of 20 cm^{3} per second. Find the rate at which the surface area is increasing at the moment that the radius is 10 cm . (Include appropriate units.)

$$
\begin{aligned}
& V=\frac{4}{3} \pi r^{3}, \quad S=4 \pi r^{2} \quad \frac{d V}{d t}=20 \frac{\mathrm{~cm}^{3}}{\mathrm{sec}} \\
& \text { find } \frac{d S}{d t} \text { when } r=10 \mathrm{~cm} \text {. } \\
& \frac{d S}{d t}=8 \pi r \frac{d r}{d t} \text { and } \quad \frac{d V}{d t}=4 \pi r^{2} \frac{d r}{d t} \\
& \Rightarrow \frac{d r}{d t}=\frac{1}{4 \pi s^{2}} \frac{d V}{d t} \\
& \text { So } \frac{d S}{d t}=8 \pi r\left(\frac{1}{4 \pi r^{2}}\right) \frac{d V}{d t}=\frac{2}{r} \frac{d V}{d t} \\
& \text { when } r=10 \mathrm{~cm} \\
& \frac{d S}{d t}=\frac{2}{10 \mathrm{~cm}}\left(20 \frac{\mathrm{~cm}^{3}}{\mathrm{sec}}\right)=4 \frac{\mathrm{~cm}^{2}}{\mathrm{sec}} \\
& \text { The surface ama is increasing at a rote } \\
& \text { of } 4 \mathrm{~cm}^{2} \text { pensecond. }
\end{aligned}
$$

The following may or may not be useful:

- The volume of a sphere of radius r is $\frac{4 \pi}{3} r^{3}$
- The balloon is orange.
- The volume of a cylinder of radius r and height h is $\frac{\pi}{3} r^{2} h$
- The surface area of a sphere of radius r is $4 \pi r^{2}$
- Orange rhymes with Blorenge.
(4) (10 points) Set up the Newton's Method iteration formula that could be used to find the positive real root of the polynomial $f(x)=x^{4}-x^{3}+2 x-4$. Starting with an initial guess of $x_{0}=1$, compute the next iterate x_{1}.

$$
\begin{gathered}
f^{\prime}(x)=4 x^{3}-3 x^{2}+2 \quad f(1)=1-1+2-4=-2 \\
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \\
x_{n+1}=f_{n}^{\prime}(1)=4-3+2=3 \\
x_{1}=x_{0}-\frac{x_{n}^{4}-x_{n}^{3}+2 x_{n}-4}{4 x_{n}^{3}-3 x_{n}^{2}+2} \\
f^{\prime}\left(x_{0}\right) \\
x_{0}=1
\end{gathered}
$$

(5) (10 points) Find the average value of the function $f(x)=\frac{1}{\sqrt{x}}$ over the interval $[1,9]$.

$$
\begin{aligned}
f_{\text {avs }} & =\frac{1}{9-1} \int_{1}^{9} x^{-1 / 2} d x \\
= & \frac{1}{8}\left[\left.\frac{x^{112}}{1 / 2}\right|_{1} ^{9}=\frac{1}{8}\left(\left.2 \sqrt{x}\right|_{1} ^{9}\right.\right. \\
& =\frac{1}{9}(2 \sqrt{9}-2 \sqrt{1})=\frac{1}{8}(6-2) \\
& =\frac{4}{8}=\frac{1}{2}
\end{aligned}
$$

(6) (10 points) Find the area of the largest rectangle that can be inscribed in the first quadrant under the parabola $y=27-x^{2}$.

If the rectangle hits the curve e (x, y), the awe is

$$
A=x y=x\left(27-x^{2}\right)
$$

Fin crit, \#:

$$
A^{\prime}(x)=27-3 x^{2}=3\left(9-x^{2}\right)
$$

$$
A^{\prime}(x) \text { is always defied }
$$

Figure 1: Example of an inscribed rectangle.

$$
A^{\prime}(x)=0 \Rightarrow x= \pm 3
$$

$$
\text { Since } x>0, x=3 \text { is the only crit. \# }
$$

of interest. $2^{\text {nd }}$ der.test

$$
A^{\prime \prime}(x)=-6 x \quad A^{\prime \prime}(3)=-18<0
$$

we have a mos.

The maximal aver is

$$
A(3)=3\left(27-3^{2}\right)=3(18)=54
$$

(7) (15 points, 5 each) Evaluate each derivative.
(a) $\frac{d}{d x}\left[\int_{1}^{x} t \ln t d t\right]=x \ln x$
(b) $\frac{d}{d x}\left[\int_{x}^{10} e^{t} \sin t d t\right]=-e^{x} \sin x$
(c) $\frac{d}{d x}\left[\int_{x}^{2 x} \cos ^{3} t d t\right]=2 \cos ^{3}(2 x)-\cos ^{3}(x)$

