Exam 4 Math 1190 sec. 62

Spring 2017

Name:

Your signature (required) confirms that you agree to practice academic honesty.

Signature:

| Problem |
| :---: | Points,\(~\left(\begin{array}{c|c|}\hline 1 \&

\hline 2 \&

\hline 3 \&

\hline 4 \&

\hline 5 \&

\hline 6 \&

\hline 7 \&

\hline\end{array}\right.\)

INSTRUCTIONS: You have $50 \mathrm{~min}-$ utes to complete this exam.
There are 7 problems. The point values are listed with the problems.
There are no notes, or books allowed and no calculator is allowed. Illicit use of a calculator, smart phone, tablet, device that runs apps, or hand written notes will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. To receive full credit, answers must be clear, complete, justified, and written using proper notation.
(1) Use the Fundamental Theorem to evaluate each definite integral ${ }^{1}$. Simplify your answers as much as possible.
(a) (10 points) $\int_{1}^{3} \frac{2 x^{2}+1}{x} d x=\int_{1}^{3}\left(2 x+\frac{1}{x}\right) d x$

$$
\begin{aligned}
=x^{2}+\left.\ln |x|\right|_{1} ^{3} & =3^{2}+\ln 3-\left(1^{2}+\ln 1\right) \\
& =9+\ln 3-1-0=8+\ln 3
\end{aligned}
$$

(b) (10 points) $\int_{\frac{1}{2}}^{\frac{1}{\sqrt{2}}} \frac{1}{\sqrt{1-y^{2}}} d y=\left.\sin ^{-1} y\right|_{\frac{1}{2}} ^{\frac{1}{\sqrt{2}}}$

$$
\begin{aligned}
& =\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)-\sin ^{-1}\left(\frac{1}{2}\right) \\
& =\frac{\pi}{4}-\frac{\pi}{6}=\frac{3 \pi}{12}-\frac{2 \pi}{12}=\frac{\pi}{12}
\end{aligned}
$$

${ }^{1}$ The following may or may not be useful

$$
\begin{gathered}
\sin 0=0, \quad \cos 0=1, \quad \tan 0=0 \\
\sin \frac{\pi}{6}=\frac{1}{2}, \quad \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}, \quad \tan \frac{\pi}{6}=\frac{1}{\sqrt{3}} \\
\sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}, \quad \cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}, \quad \tan \frac{\pi}{4}=1 .
\end{gathered}
$$

(2) The graph of $y=f(x)$ is shown. The curve on the interval $2 \leq x \leq 6$ is a semicircle. Use the

figure to evaluate each integral. (Your answers should be exact values, not approximations.)
(a) (6 points) $\int_{0}^{6} f(x) d x=2+2 \pi \quad A_{1}+A_{2}$
(b) (6 points) $\int_{2}^{8} f(x) d x=2 \pi-3 \quad A_{2}-A_{3}$
(3) Evaluate each definite integral.
(a) (10 points) $\left.\int_{0}^{2} x(3 x+1) d x=\int_{0}^{2}\left(3 x^{2}+x\right) d x=x^{3}+\frac{x^{2}}{2}\right)_{0}^{2}=2^{3}+\frac{2^{2}}{2}-\left(0^{3}+\frac{0^{2}}{2}\right)$ $=8+2-0=10$
(b) (10 points) $\quad \int_{-1}^{0} 2 e^{2 x} d x$

$$
=\left.e^{2 x}\right|_{-1} ^{0}=e^{0}-e^{-2}=1-e^{-2}
$$

(4) Evaluate each indicated derivative.
(a) (10 points) $\frac{d}{d x} \int_{3}^{x} \cos \left(2^{t}\right) d t=\operatorname{Cos}\left(2^{x}\right)$
(b) (10 points) $\begin{aligned} \frac{d}{d x} \int_{1}^{\frac{1}{x}} t \ln (t) d t & =\frac{1}{x} \ln \left(\frac{1}{x}\right) \cdot\left(\frac{-1}{x^{2}}\right) \quad \frac{d}{d x} x^{-1}=-x^{-2}=\frac{-1}{x^{2}} \\ & =-\frac{\ln \frac{1}{x}}{x^{3}}=\frac{\ln x}{x^{3}} \quad *-\ln \frac{1}{x}=\ln x\end{aligned}$
(5) (8 points) A spherical snow ball grows as it rolls down a hill. At the moment that the volume ${ }^{2}$ of the snow ball is $\frac{4}{3} \pi$ cubic feet, the volume is increasing at a rate of $\frac{1}{10}^{\text {th }}$ cubic feet per second. Determine the rate at which the radius of the snow ball is changing when its volume is $\frac{4}{3} \pi$ cubic feet. (Include units in your answer.)
(ri) $V=\frac{4}{3} \pi r^{3} \Rightarrow \frac{d V}{d t}=\frac{4}{3} \pi\left(3 r^{2}\right) \frac{d r}{d t}=4 \pi r^{2} \frac{d r}{d t}$
when $V=\frac{4}{3} \pi f t^{3}, \frac{4}{3} \pi r^{3}=\frac{4}{3} \pi \Rightarrow r^{3}=1 \Rightarrow r=1 \mathrm{ft}$

At this moment

$$
\begin{aligned}
\frac{1}{10} \frac{f t^{3}}{\sec } & =4 \pi(1 f t)^{2} \cdot \frac{d r}{d t} \\
\frac{d r}{d t} & =\frac{1}{10} \frac{f t^{3}}{\sec } \frac{1}{4 \pi\left(1^{2}+t^{2}\right)}=\frac{1}{40 \pi} f t / \sec
\end{aligned}
$$

The radius is increasing at a rate of

$$
\frac{1}{40 \pi} \text { ft pen sec. }
$$

${ }^{2}$ The volume V and surface area S of a sphere with radius r are

$$
V=\frac{4}{3} \pi r^{3} \quad \text { and } \quad S=4 \pi r^{2}
$$

(6) (8 points) The rectangle shown has height h and width w. Suppose that when $h=4$ meters, and $w=2$ meters, the height is decreasing at a rate of $50 \mathrm{~cm} / \mathrm{min}$ (i.e. $\frac{1}{2} \mathrm{~m} / \mathrm{min}$) and the width is increasing at a rate of $75 \mathrm{~cm} / \mathrm{min}$ (i.e. $\frac{3}{4} \mathrm{~m} / \mathrm{min}$). Determine the rate at which the area is changing when the height and width are 4 and 2 meters, respectively. (Include appropriate units in your answer.)
h

$$
\begin{aligned}
A=\text { when } \quad h & =4 \mathrm{~m}, w=2 \mathrm{~m} \\
& \frac{d h}{d t}=-\frac{1}{2} \frac{\mathrm{~m}}{\mathrm{~min}} \\
& \frac{d \omega}{d t}=\frac{3}{4} \frac{\mathrm{~m}}{\mathrm{~min}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d A}{d t}=h \frac{d \omega}{d t}+\omega \frac{d h}{d t} \\
& \text { So when } h=4 \text { and } \omega=2 \\
& \frac{d A}{d t}=4 m\left(\frac{3}{4} \frac{m}{m i n}\right)+2 m\left(\frac{-1}{2} \frac{m}{m i n}\right) \\
&=3 \frac{m^{2}}{m i n}-1 m^{2} \ln \text { in }=2 \frac{m^{2}}{m i n}
\end{aligned}
$$

Ara is increasing at a rate of $2 \frac{\mathrm{~m}^{2}}{\mathrm{~min}}$.
(7) (a) (6 points) Show that $\frac{d}{d x}(x \ln x-x)=\ln x$.

$$
\frac{d}{d x}(x \ln x-x)=1 \cdot \ln x+x \cdot \frac{1}{x}-1=\ln x+1-1=\ln x
$$

(b) (6 points) Use the above result to evaluate the integral

$$
\begin{aligned}
\int_{1}^{e} \ln x d x=\ln x-\left.x\right|_{1} ^{e} & =e \ln e-e-(|\ln |-1) \\
& =e \cdot 1-e-(0-1) \\
& =0-(-1)=1
\end{aligned}
$$

