Exam 4 Math 1190 sec. 63

Spring 2017

Name: \qquad
Your signature (required) confirms that you agree to practice academic honesty.

Signature:

Problem	Points
1	
2	
3	
4	
5	
6	
7	

INSTRUCTIONS: You have $50 \mathrm{~min}-$ utes to complete this exam.
There are 7 problems. The point values are listed with the problems.
There are no notes, or books allowed and no calculator is allowed. Illicit use of a calculator, smart phone, tablet, device that runs apps, or hand written notes will result in a grade of zero on this exam as well as a formal allegation of academic misconduct. To receive full credit, answers must be clear, complete, justified, and written using proper notation.
(1) Use the Fundamental Theorem to evaluate each definite integral ${ }^{1}$. Simplify your answers as much as possible.
(a) (10 points) $\int_{1}^{3} \frac{1-2 x^{2}}{x} d x=\int_{1}^{3}\left(\frac{1}{x}-2 x\right) d x$

$$
\begin{aligned}
=\ln |x|-\left.x^{2}\right|_{1} ^{3} & =\ln |3|-3^{2}-\left(\ln |1|-1^{2}\right) \\
& =\ln 3-9-(0-1) \\
& =\ln 3-9+1=\ln 3-8
\end{aligned}
$$

(b) (10 points) $\int_{\frac{1}{\sqrt{2}}}^{\frac{\sqrt{3}}{2}} \frac{1}{\sqrt{1-z^{2}}} d z=\left.\sin ^{-1} z\right|_{\frac{1}{\sqrt{2}}} ^{\frac{\sqrt{3}}{2}}$

$$
\begin{aligned}
& =\sin ^{-1} \frac{\sqrt{3}}{2}-\sin ^{-1} \frac{1}{\sqrt{2}} \\
& =\frac{\pi}{3}-\frac{\pi}{4}=\frac{\pi}{12}
\end{aligned}
$$

[^0](2) The graph of $y=f(x)$ is shown. The curve on the interval $2 \leq x \leq 6$ is a semicircle. Use the

\[

$$
\begin{aligned}
& A_{1}=\frac{1}{2}(2)(2)=2 \\
& A_{2}=\frac{1}{2} \pi(2)^{2}=2 \pi \\
& A_{3}=\frac{1}{2}(2)(3)=3 \\
& A_{4}=\frac{1}{2}(1)(1)=\frac{1}{2}
\end{aligned}
$$
\]

figure to evaluate each integral. (Your answers should be exact values, not approximations.)
(a) (6 points) $\int_{0}^{8} f(x) d x=2+2 \pi-3=2 \pi-1 \quad A_{1}+A_{2}-A_{3}$
(b) (6 points) $\int_{1}^{6} f(x) d x=\frac{1}{2}+2 \pi$
$A_{4}+A_{2}$
(3) Evaluate each definite integral using any applicable technique.
(a) (10 points) $\left.\int_{1}^{2} x(3 x+4) d x=\int_{1}^{2}\left(3 x^{2}+4 x\right) d x=x^{3}+2 x^{2}\right)_{1}^{2}$

$$
=2^{3}+2 \cdot 2^{2}-\left(1^{3}+2 \cdot 2^{2}\right)=8+8-3=13
$$

(b) (10 points) $\int_{-1}^{1} 3 e^{3 x} d x=\left.e^{3 x}\right|_{-1} ^{1}=e^{3}-e^{-3}$
(4) Evaluate each indicated derivative.
(a) (10 points) $\frac{d}{d x} \int_{2}^{x} \cot \left(t^{3}\right) d t=\operatorname{Cot}\left(x^{3}\right)$
(b) (10 points) $\quad \frac{d}{d x} \int_{1}^{\sqrt{x}} t \ln (t) d t=\sqrt{x} \ln (\sqrt{x}) \cdot \frac{1}{2 \sqrt{x}}$ $\frac{d}{d x} x^{1 / 2}=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}}$

$$
=\frac{1}{2} \ln \sqrt{x}
$$

(5) (8 points) Sand is dumped into a pile in the shape of a cone such that the height is always twice the base radius ${ }^{2}$. At the moment that the volume of the pile is $\frac{2 \pi}{3}$ cubic meters, the volume is increasing at a rate of $\frac{1}{2}$ cubic meters per minute. Determine the rate at which the base radius is changing when the volume of the pile is $\frac{2 \pi}{3}$ cubic meters. (Include units in your answer.)

$$
\begin{aligned}
& \text { \/ when } V=\frac{2 \pi}{3} m^{3}, \quad \frac{2 \pi}{3}=\frac{2 \pi}{3} r^{3} . \\
& \text { Given } \frac{d V}{d t}=\frac{1}{2} \mathrm{~m}^{3} / \min \\
& \text { when } r=1 \mathrm{~m} \\
& \frac{d V}{d t}=\frac{2 \pi}{3}\left(3 r^{2}\right) \frac{d r}{d t}=2 \pi r^{2} \frac{d r}{d t} \\
& \Rightarrow \frac{d r}{d t}=\frac{1}{2 \pi r^{2}} \frac{d V}{d t} \\
& \text { So when } \begin{aligned}
& r=1 m \\
& \frac{d r}{d t}=\frac{1}{2 \pi(1 m)^{2}} \cdot \frac{1}{2} \frac{m^{3}}{n i n}=\frac{1}{4 \pi} \frac{m}{m i n}
\end{aligned} \\
& \text { The radius is incuesing at a rate of } \frac{1}{4 \pi} \\
& \text { meters pu miriute of this moment. }
\end{aligned}
$$

[^1](6) (8 points) The triangle shown has height h and base length b. Suppose that when $h=6$ meters, and $b=4$ meters, the height is decreasing at a rate of $1 \mathrm{~m} / \mathrm{hr}$ and the base is increasing at a rate of $2 \mathrm{~m} / \mathrm{hr}$. Determine the rate at which the area is changing when the height and base are 6 and 4 meters, respectively. (Include appropriate units in your answer.)

Given, when $h=6 \mathrm{~m}$ and $b=4 \mathrm{~m}$

$$
\frac{d A}{d t}=\frac{1}{2} b \frac{d h}{d t}+\frac{1}{2} h \frac{d b}{d t}
$$

So when $h=6$ and $b=4$

Atthis time, the area is increasing at a rate $014 \mathrm{~m}^{2}$ pen hours.
(7) (a) (6 points) Show that $\frac{d}{d x}(\sin x-x \cos x)=x \sin x$.

$$
\begin{aligned}
\frac{d}{d x}(\sin x-x \cos x) & =\cos x-1 \cdot \cos x-x(-\sin x) \\
& =\cos x-\cos x+x \sin x=x \sin x
\end{aligned}
$$

(b) (6 points) Use the above result to evaluate the integral

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} x \sin x d x=\sin x-\left.x \cos x\right|_{0} ^{\pi / 2} & =\sin \frac{\pi}{2}-\frac{\pi}{2} \cos \frac{\pi}{2}-(\sin 0-0 \cos 0) \\
& =1-0-(0-0)=1
\end{aligned}
$$

[^0]: ${ }^{1}$ The following may or may not be useful

 $$
 \begin{gathered}
 \sin 0=0, \quad \cos 0=1, \quad \tan 0=0, \\
 \sin \frac{\pi}{6}=\frac{1}{2}, \quad \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}, \quad \tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}, \\
 \sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}, \quad \cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}, \quad \tan \frac{\pi}{4}=1 .
 \end{gathered}
 $$

[^1]: ${ }^{2}$ The volume V of a cone of base radius r and height $2 r$ is $V=\frac{2 \pi}{3} r^{3}$

