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Abstract. Frontal polymerization is a process of converting a monomer into a polymer by means
of a self-propagating thermal reaction wave. We study initiation of polymerization waves by a high
temperature heat source. A five species reaction model is considered with a focus on the evolution
of two of these species and the temperature of the mixture. The temperature is tracked from the
inert heating to the transition stage. Through an asymptotic analysis, the first correction to the
temperature in transition is found as the solution to an integral equation. Two parameters govern
the qualitative behavior of the solution to the integral equation. Depending on the magnitude of
these parameters, the solution exhibits either bounded or unbounded behavior indicating the onset
or inhibition of propagation of a polymerization wave.
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1. Introduction. Frontal polymerization is the process of converting a monomer
into a polymer by means of a self-propagating high temperature reaction wave. The
chemical process involves two species: a monomer and an initiator, which is needed
to start the growth of polymer chains. In a typical experiment, the species are placed
into a test tube, and the temperature at the end of the tube is increased by applying
a heat source. The increase in temperature induces decomposition of the initiator,
which produces active radicals, and the highly exothermic propagation process begins.
The resulting heat release promotes initiator decomposition ahead of the front, and a
self-sustained reaction wave travels through the mixture leaving polymer in its wake.

Experimental and theoretical studies of frontal polymerization began in the 1970s
(see references 1–4 in [5]). In [5] and [6], a mathematical model for the five species
reaction is presented, and traveling wave solutions are sought. In these theoretical
examinations of the process, the focus has been on the propagation of the thermal front
and its velocity, the spatial profiles of the species involved, the degree of conversion
of monomer, and the final temperature of the mixture. Initiation of a polymerization
front is presumed. From experimental work, however, it is found that initiation of the
front does not always occur. It is desirable to determine the dependence of initiation
on the amount of reactants at the onset of the experiment, the initial temperature, the
heat control imposed at the end of the test tube, and the properties of the initiator.

The purpose of this paper is to examine the initiation process necessary for prop-
agation. In this respect, the current study is similar to ignition considerations in solid
phase combustion problems. Unlike the combustion problem with a single reactant,
the frontal polymerization process involves several chemical reaction steps with differ-
ent reaction rates and activation energies. However, the reaction mechanism in both
types of problem is assumed to be Arrhenius, and, upon nondimensionalization of the
kinetic equations governing frontal polymerization, we can obtain a system of partial
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differential equations of a form similar to those arising in solid phase combustion.
For this reason, the techniques applied in the current analysis are similar to those
employed in [1, 2, 3, 4] in the examination of ignition of a combustible half-space.
Lasseigne and Olmstead [4] consider the effects of reactant consumption, and they
derive an integral equation governing the temperature at the ignition site. In this
paper, we show that the mechanism governing initiation of the polymerization front
gives rise to a similar two parameter integral equation governing the temperature in
the transitional heating stage. In fact, under certain limiting conditions, the integral
equation in [4] for a first order Arrhenius reaction appears as a special case of the in-
tegral equation presented in the current work. An asymptotic analysis of this integral
equation is given, and numerical results are presented.

2. The mathematical model. The typical experiment in free radical frontal
polymerization involves placing a mixture of initiator and monomer into a test tube.
Assuming that the cross-sectional area of the tube is small relative to its length, we
can model the tube as a thin semi-infinite channel x̂ ≥ 0. A boundary condition on
the heat flux will be prescribed at the end (x̂ = 0). The evolution of the reactants
and the temperature can then be tracked. A mathematical model for a five species
reaction is derived in [5] and [6], and the following system of equations governing the
kinetics at time t̂ in dimensional coordinates is given:

dI

dt̂
= −kdI,(2.1)

dR

dt̂
= 2fkdI − kiRM − keRRp,(2.2)

dM

dt̂
= −kiRM − kpMRp,(2.3)

dRp

dt̂
= kiRM − keRRp − 2ktR

2
p,(2.4)

dP

dt̂
= keRRp + ktR

2
p.(2.5)

The five species are the initiator, free radicals, monomer, polymer radicals, and
the final polymer, denoted by I, R, M , Rp, and P , respectively. The parameter f
appearing in the second equation is the ratio of primary radicals in the polymer to
the primary radicals formed by the initiator. In practice, its value is taken to be 1/2
(see [5]). The quantities, written above as k with a subscript, are assumed to have
an Arrhenius dependence on the temperature T of the system. Thus, they can be
expressed as

kα(T ) = k0
α exp

(−Eα

RgT

)
for α = d, i, p, e, t.

Here, k0
α is the frequency factor, Eα is the activation energy for the corresponding

reaction, and Rg is the universal gas constant. The subscripts correspond to the five
reaction steps—initiator decomposition d, polymer chain initiation i, chain propaga-
tion p, free radical termination e, and polymer radical termination t.

To formulate the heat balance in the system, we note that the decomposition step
is slightly endothermic but that each of the four subsequent reactions is exothermic.
However, the most significant heat release occurs in the propagation step [9]. Thus,
only this contribution to the net energy of the system will be considered here. Letting
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T (t̂, x̂) denote the temperature of the mixture at time t̂ and at the point x̂, κ > 0
the thermal diffusivity of the mixture, and q > 0 the increase in temperature induced
per unit reacted monomer, we can write the following reaction diffusion equation
governing the temperature:

∂T

∂t̂
= κ

∂2T

∂x̂2
− q

∂M

∂t̂
.(2.6)

Equations (2.1)–(2.6), together with appropriate initial and boundary conditions,
completely describe the state of the mixture. Because we are interested in initiation
of a polymerization front, we will consider a reduced system obtained by imposing
the quasi-steady-state assumption (QSSA) [6], reducing the number of unknowns as
in [5] and [6], and considering only the evolution of the initiator, the monomer, and
the temperature. The QSSA states that the level of free and polymer radicals in the
mixture is nearly constant. Hence, we set (d/dt̂)(R +Rp) = 0. In addition, we make
the following simplifying assumptions as justified in [6]:

ki = kp, ke = kt, and Rp � R.

Summing (2.2) and (2.4) and making the aforementioned assumptions yields

R+Rp ≈
√
2fkd
kt

√
I.

Then (2.3) becomes

dM

dt̂
= −kp

√
2fkd
kt

M
√
I.

Noting that the coefficient in front of M in the above equation is an Arrhenius expo-
nential motivates the following convenient notation for the effective reaction rate:

keff = kp

√
2fkd
kt

, k0
eff = k0

p

√
2fk0

d

k0
t

, and Eeff =
1

2
(Ed − Et) + Ep.

The initial amounts of monomer and initiator present are known and will be
denoted by M0 and I0. Similarly, the initial temperature of the system is given as T0.
In the current work, we will assume that the boundary condition on the temperature
at x̂ = 0 will be a Neumann condition. That is, the heat flux is prescribed as

∂T

∂x̂
= −ĥ(t̂) for x̂ = 0, t̂ > 0.

Further, we assume that ĥ(t̂) > 0 for all t̂. This restriction implies an energy input
at the end of the test tube. Finally, the temperature far from the end is assumed to
be equal to the initial temperature. The reduced, dimensional form of the system to
be studied can then be written as

∂I

∂t̂
= −kd(T )I, I(0) = I0,(2.7)

∂M

∂t̂
= −keff (T )M

√
I, M(0) =M0,(2.8)

∂T

∂t̂
= κ

∂2T

∂x̂2
+ qkeff (T )M

√
I, T (0, x̂) = T0, x̂ ≥ 0,(2.9)

∂T (t̂, 0)

∂x̂
= −ĥ(t̂), and T → T0 as x̂ → ∞.(2.10)
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3. Scaling and nondimensionalization. Because the activation energies are
relatively large, the Arrhenius reaction terms are insignificant, provided that the tem-
perature is relatively small. Thus, we will consider a critical value of the temperature
Tc at which the reaction terms become appreciable. The value of Tc will be made more
precise later. Further, the largeness of the activation energies facilitates a perturbation
scheme in solving for the temperature. Hence, we introduce the small parameter

ε =
RgTc
Eeff

and define the quantities

r =
Ed

Eeff
, k̃0

d = k0
de

−r/ε, k̃0
eff = k0

effe
−1/ε,

t∗ = (k̃0
eff

√
I0 )

−1, x∗ =
√
κt∗.

We also introduce the nondimensional variables

φ =
I

I0
, ψ =

M

M0
, θ =

T

Tc
, θ0 =

T0

Tc
,

h(t) =
x∗

Tc
ĥ(t̂), t =

t̂

t∗
, and x =

x̂

x∗
.

From (2.7)–(2.9), we obtain the corresponding nondimensional system:

∂φ

∂t
= −Aφ exp

{
r

ε

(
1− 1

θ

)}
, φ(0) = 1,(3.1)

∂ψ

∂t
= −ψ

√
φ exp

{
1

ε

(
1− 1

θ

)}
, ψ(0) = 1,(3.2)

∂θ

∂t
=

∂2θ

∂x2
+Bψ

√
φ exp

{
1

ε

(
1− 1

θ

)}
, θ(0, x) = θ0,(3.3)

∂θ(t, 0)

∂x
= −h(t), and θ → θ0 as x → ∞.(3.4)

The additional nondimensional parameters A and B appearing in (3.1) and (3.3)
are defined by

A =
k̃0
d

k̃0
eff

√
I0

and B =
M0q

Tc
.

The role of initiator consumption in the possible inhibition of initiation is inherent in
the scaling of these two parameters. If A is large, for example, we can expect that the
amount of initiator will rapidly decay. This rapid decay or an insufficient quantity of
initiator at the onset of the experiment will cause the reaction to stop before a thermal
front can develop. Similarly, if B is small, the effect of the reaction term in (3.3) is
decreased. This can result in insufficient heat to initiate and maintain propagation of
the polymer chain. In the present analysis, the following scaling will be assumed:

A = A0ε
−1 and B = B0ε

− 1
2 ,

with A0 = O(1) and B0 = O(1) with respect to ε. The numerical values of A, B, and
ε depend on the choice of reactants, their kinetic properties, and the conditions of the
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experiment (e.g., pressure and ambient temperature). Extensive tabulated values of
activation energies, preexponential factors, and other kinetic parameters for various
initiators and monomers can be found in [10]. For typical values of the physical
parameters appearing in (2.7)–(2.10), the value of ε is expected to be in the range
of 10−4 to 10−3. Moreover, at room temperature the values of A0 and B0 can range
between 0.01 and 10. Given the typical range of values for ε, this is consistent with
the assumption that A0 and B0 are O(1) with respect to ε.

For fixed A0, the quantity Tc is defined by the relation

A =
kd(Tc)

keff (Tc)
√
I0

.(3.5)

Equations (3.1) and (3.2) are separable and can be solved explicitly. We have

φ(t) = exp

(
−A

∫ t

0

e
r
ε (1− 1

θ ) ds

)
,

ψ(t) = exp

(
−
∫ t

0

e
1
ε (1− 1

θ ) × e−
A
2

∫ s
0
e
r
ε (1− 1

θ ) dq ds

)
.

Upon substitution of the above into the boundary value problem (3.3)–(3.4), the
system reduces to one involving only a single dependent variable. In the next section,
an asymptotic solution to (3.3)–(3.4) will be derived.

4. Solving for the temperature. As stated, we consider the initial tem-
perature to be small so that the reaction terms are negligible at the onset of the
experiment—during the inert heating stage. In the formulation above, this means
that we take θ0 < 1 and 1 − θ0 = O(1) with respect to ε. This allows us to initially
ignore the Arrhenius term, which is mathematically equivalent to taking the limit
ε → 0 in (3.1)–(3.3). Let θI be given by

θI(t, x) = θ0 +

∫ t

0

h(τ)
e

−x2

4(t−τ)√
π(t− τ)

dτ.

Then θI solves the problem (3.3)–(3.4) in the limit ε → 0; we will call this the inert
solution. From 0 < 1− θ0 and 1− θ0 = O(1), it follows that initially

θ = θI + e.s.t.,

where e.s.t. represents terms that are exponentially small with respect to ε. However,
this remains valid only until such time as θI ≈ 1. In order to continue the analysis,
let us define the critical time tc to be the smallest value such that

1 = θI(tc, 0) = θ0 +

∫ tc

0

h(τ)√
π(tc − τ)

dτ.

For arbitrary h(t), such a critical time need not exist. This suggests a restriction on
the class of boundary conditions that can lead to initiation. We will assume that the
imposed flux h(t) given is such that this critical time does exist. Also note that the
above is evaluated at x = 0 because θI attains its maximum at the end x = 0. The
inert stage of the reaction ends in the neighborhood of (tc, 0), and the system enters
a transition stage where the reaction terms first become appreciable. To further
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our investigation, we perturb about this point and introduce the new independent
variables

ξ =
x

ε
, τ =

t− tc
ε

.

In these inner variables, (3.1)–(3.3) become

φτ = −A0φ exp

{
r

ε

(
1− 1

θ

)}
, φ → 1 as τ → −∞,(4.1)

ψτ = −εψ
√

φ exp

{
1

ε

(
1− 1

θ

)}
, ψ → 1 as τ → −∞,(4.2)

εθτ = θξξ + ε3/2B0ψ
√

φ exp

{
1

ε

(
1− 1

θ

)}
, θ → θ0 as τ → −∞,(4.3)

θξ = O(ε) for ξ = 0 and τ > −∞.(4.4)

We note here that the conditions at t = 0 in the outer variables correspond asymp-
totically to conditions in the inner variables as τ → −∞. The first two equations can
again be solved to obtain

φ(τ) = exp

(
−A0

∫ τ

−∞
e

r
ε (1− 1

θ ) ds

)
,(4.5)

ψ(τ) = exp

(
−ε

∫ τ

−∞
e

1
ε (1− 1

θ ) × e−
A0
2

∫ s
−∞ e

r
ε (1− 1

θ ) dq ds

)
.(4.6)

Substitution of these integrals into (4.3)–(4.4) yields a single problem in the variable
θ.

4.1. An asymptotic expansion. We seek an asymptotic expansion for θ of the
form

θ = θI + εθ0 + ε3/2θ1 + · · · .
Then we can expand θI about (tc, 0) and write

θI = 1 + εaτ − εbξ + o(ε),(4.7)

where

a = lim
t→tc

∂θI
∂t

, b = − lim
x→0

∂θI
∂x

.

For the continued analysis, we must assume that these limits exist and that a > 0
and b > 0. The latter condition follows from requiring that h be a nonnegative
function for all times corresponding to an influx of energy at the end of the test tube.
The condition a > 0 implies that the temperature is increasing at the onset of the
transition phase. Both of these are consistent with the potential for initiation.

Substitution of (4.7) into the expansion of θ yields

θ = 1 + ε(aτ − bξ + θ0) + ε3/2θ1 + o(ε3/2),

so that

1

ε

(
1− 1

θ

)
= (aτ − bξ + θ0) + o(1).
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Combining this result with (4.5) and (4.6) and substituting into the boundary value
problem (4.3)–(4.4), we arrive at the equations governing θ0 and θ1:

θ0
ξξ = 0,

O(ε) :
θ0(−∞, ξ) = 0, θ0

ξ(τ, 0) = 0,
(4.8)

θ1
ξξ = −B0e

aτ−bξ+θ0

exp
(

−A0

2

∫ τ
−∞ er(as−bξ+θ0) ds

)
,

O(ε3/2) :
θ1(−∞, ξ) = 0, θ1

ξ(τ, 0) = 0.

(4.9)

Equation (4.8) has solution

θ0(τ, ξ) = f0(τ), where f0(τ)→ 0 as τ → −∞.

This is substituted into (4.9) to obtain

θ1(τ, ξ) = −B0e
aτ+f0(τ)

∫ ξ

0

∫ z

0

e−bẑ exp

(−A0

2
e−rbẑ

∫ τ

−∞
er(as+f0(s)) ds

)
dẑ dz+f1(τ),

with f1(τ)→ 0 as τ → −∞.
The function f0(τ) governs the first order correction to the inert solution in the

transition stage.

4.2. The transition stage solution. In order to determine the nature of f0 we
need a matching condition for large ξ. To this end, we consider the stretched space
variable

X =
√
εξ.

Let Θ̂ represent the solution in the boundary layer. From (4.3) we have

Θ̂τ = Θ̂XX +O(ε1/2).

Assuming that θ has the following form in the boundary layer,

θ = θI + εΘ̂0 + ε3/2Θ̂1 + · · · ,
the O(ε) problem is

Θ̂0
τ = Θ̂0

XX , Θ̂0 → 0 as τ → −∞.

Additional conditions at X = 0 are needed and are determined by matching to the
outer solution. Observe that as X → 0 and ξ → ∞,

εΘ̂0 + ε3/2Θ̂1 + · · · = εθ0 + ε3/2θ1 + · · · ,(4.10)

εΘ̂0
X + ε3/2Θ̂1

X + · · · = 0 + ε3/2θ1
X + · · ·

= 0 + ε3/2(ε−1/2θ1
ξ) + · · · .(4.11)

Equating by powers in ε, the above implies that

lim
X→0

Θ̂0(τ,X) = lim
ξ→∞

θ0(τ, ξ), lim
X→0

Θ̂X(τ,X) = lim
ξ→∞

θ1
ξ(τ, ξ).
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The equation that Θ̂0 satisfies is

Θ̂0
τ = Θ̂0

XX ,

Θ̂0
X(τ, 0) = −B0e

aτ+f0(τ)

∫ ∞

0

e−bze
−A0

2 e−rbz
∫ τ
−∞ er(as+f0(s)) ds dz(4.12)

≡ J(τ),

Θ̂0 → 0 as τ → −∞.

The additional condition

Θ̂0(τ, 0) = f0(τ)

determines the unknown function f0. The solution of (4.12) can be expressed in terms
of the Green’s function

Θ̂0(X, τ) = −
∫ τ

−∞
J(σ)G(X, τ ; 0, σ) dσ,

where

G(X, τ ; 0, σ) =
1√

π(τ − σ)
e

−X2

4(τ−σ) .

Finally, applying the condition on Θ̂0 at X = 0, we arrive at the nonlinear integral
equation governing the temperature in the transition stage:

f0(τ) = −
∫ τ

−∞

J(σ)√
π(τ − σ)

dσ =
B0

b

∫ τ

−∞

ef0(σ)+aσ√
π(τ − σ)

Q(σ) dσ,(4.13)

where

Q(σ) =

∫ ∞

0

be−bz exp

(
−e−rbzA0

2

∫ σ

−∞
er(f0(s)+as) ds

)
dz.

In the next section, we will examine the integral equation (4.13). We will perform a
coordinate change resulting in the appearance of an additional parameter governing
the qualitative behavior of the solution. Existence considerations will be addressed,
and both analytical and numerical results presented.

5. Analysis of the integral equation. The parameter r was defined as the ra-
tio of the decomposition activation energy to the effective activation energy obtained
by applying the QSSA. Typical experimental values of the activation energy for de-
composition, propagation, and termination are such that Ed � Ep � Et. It follows
that the ratio r is roughly 2. We will consider only values of r such that 1 < r ≤ 2,
with special attention given to the case r = 2.

The integral Q appearing in (4.13) can be expressed in terms of gamma functions.
Note that∫ ∞

0

be−bz exp

(
−e−rbzA0

2

∫ σ

−∞
er(f0(s)+as) ds

)
dz =

Γ
(

1
r

)
r

γ

(
1

r
, q(σ)

)
,

where

q(σ) =
A0

2

∫ σ

−∞
er(f0(s)+as) ds,
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Γ is the gamma function, and γ is the incomplete gamma function defined by

γ(α, z) =
z−α

Γ(α)

∫ z

0

e−ttα−1 dt.

To facilitate the analysis of the integral equation, let us introduce the change of
variables

η = aτ + log

(
B0

b
√
a

)
and u(η) = f0(τ).

In these new coordinates, (4.13) takes the form

u(η) =

∫ η

−∞

eu(σ)+σ√
π(η − σ)

Fr

(
λr

∫ σ

−∞
er(u(s)+s) ds

)
dσ.(5.1)

The function Fr appearing above is defined by

Fr(x) =
Γ
(

1
r

)
r

γ

(
1

r
, x

)
for x > 0, with Fr(0) = 1,

and the parameter λr is the ratio

λr = ar/2−1A0b
r

2Br
0

≥ 0.

Note that in the limiting case r = 2,

F2(x) =

√
π

2

erf(
√
x)√

x

and

λ2 =
A0b

2

2B2
0

.

A number of observations should be made about the parameter λr and the function
Fr defined above. First, in the limiting case, λ = 0 (Fr ≡ 1), equation (5.1) reduces
to the integral equation derived by Liñàn and Williams [1], Kapila [2], and Olmstead
[3]. It is known that this equation has a solution u that is positive and monotonically
increasing, with the asymptotic behavior

u ∼ eη +
1√
2
e2η + · · · as η → −∞,

u ∼ −1
2
log(η∗ − η) + · · · as η → η∗,

with η∗ ≈ −0.431 determined numerically. Also, for every value of r, Fr is positive
monotonically decreasing, with Fr → 0 as its argument tends to infinity. If r = 1,
then (5.1) is exactly that obtained by Lasseigne and Olmstead [4] governing ignition
of a solid half-space with first order Arrhenius reaction and accounting for reactant
consumption. They found that there is a critical value of the parameter λ1 such
that, for values less than this critical value, the solution u becomes unbounded in
finite time—it is this unbounded behavior that is taken to signal the onset of ignition.
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For values of λ1 larger than this critical value, the solution remains bounded for
all finite time. It is the decaying nature of Fr that serves to inhibit initiation of a
polymerization front. This is the case for all r on 1 < r ≤ 2. However, for fixed x
note that (d/dr)Fr(x) > 0. Hence, as r increases, Fr decays less rapidly. As will be
shown in section 5.3, r = 2 appears to be an upper limit for the possible existence of
solutions exhibiting the type of logarithmic singularity analogous to those discussed
in [3] and [4].

5.1. Existence of solutions to the integral equation. We continue the anal-
ysis by establishing the existence of solutions to (5.1). This is useful because it will
establish a lower bound on the time of initiation. To that end, let us consider the
class of bounded functions

S = {u : (−∞, η̃]→ [0, N ]},
where η̃ > −∞ and 0 < N < ∞. Additionally, let the integral operator T be given
by

Tu �−→
∫ η

−∞

eu(σ)+σ√
π(η − σ)

Fr

(
λr

∫ σ

−∞
er(u(s)+s) ds

)
dσ for η ≤ η̃, u ∈ S.

Conditions on η̃ and N are sought to ensure that T is a contraction on S. First,
observe that, for u ∈ S,

Tu ≤ eNI0(η; r, λr),

where

I0(η; r, λr) =

∫ η

−∞

eσ√
π(η − σ)

Fr

(
λr
r
erσ
)

dσ.

Second, let u1 and u2 be elements of S. Then

|Tu1 − Tu2| ≤ sup
u1,u2∈S

|u1 − u2|
{
eNI0(η; r, λr) + e(r+1)NI1(η; r, λr)

}
,

where

I1(η; r, λr) = λr

∫ η

−∞

e(r+1)σ√
π(η − σ)

∣∣∣∣F ′
r

(
λr
r
erσ
)∣∣∣∣ dσ.

Since I0 and I1 are monotonic increasing in η, we can conclude that T is a contraction
on S, provided

I0(η̃; r, λr) ≤ Ne−N(5.2)

and

eNI0(η̃; r, λr) + e(r+1)NI1(η̃; r, λr) < 1.(5.3)

For given λr, there exists a unique pair N̂ < 1, η̂ > −∞ such that (5.2) and (5.3) are
satisfied as equalities. That is,

eN̂I0(η̂; r, λr) = N̂ ,

eN̂I0(η̂; r, λr) + e(r+1)N̂I1(η̂; r, λr) = 1.
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Inequalities (5.2) and (5.3) are satisfied for N = N̂ and any choice of η̃ < η̂. We note
that the value of η̂(λr) provides a lower bound on the time of initiation for given λr.
Moreover, N̂ and η̂ have the following asymptotic expansions for λr � 1 and λr → ∞:

N̂ ∼ 1− λr
(r + 1)3/2

+ · · · ,

η̂ ∼ −1 + λr
rer(r + 1)3/2

+ · · · as λ → 0

and

N̂ ∼ N̂∞ + · · · ,
η̂ ∼ λ2/r

r

(
π

4Γ2( 1
r )

r2−2/r

)
N̂2

∞e−2N̂∞ + · · · as λ → ∞.

The value N̂∞ is the solution to the transcendental equation N̂∞ = (1− N̂∞)e−rN̂∞ .
For 1 < r ≤ 2, the value of N̂∞ is such that 0.33 ≤ N̂∞ < 0.41. Also, r ≤ 2 and

η̂ = O(λ
2/r
r ) as λr → ∞ suggests that the onset of initiation can be delayed as long

as desired by taking λr sufficiently large.
We anticipate two qualitatively different types of solutions to (5.1), depending on

the value of λr. Self-consistent analyses for solutions that remain bounded in finite
time and those that exhibit an unbounded singularity at a finite time are sought. Such
solutions are interpreted as indicating noninitiation and initiation of a front, respec-
tively. Moreover, for a given r, there is a critical value λcr separating the initiation
and noninitiation regimes.

5.2. Noninitiation solutions. First, we consider the existence of solutions
bounded for all finite η. To this end, assume that the solution u has the following
form:

u ∼ Cηd as η → ∞,(5.4)

where C and d are constants to be determined. If λr > 0 and d < 1, then (5.4) implies

eu+ηFr

(
λr

∫ η

−∞
er(u+s) ds

)
∼ Γ( 1

r )

r

(
r

λr

)1/r

as η → ∞.

For each η � 1, we can write

u(η) = C0 + J(η),

where J is defined as

J(η) =
1√
π

∫ η

0

eu+η

√
η − σ

Fr

(
λr

∫ σ

−∞
er(u+s) ds

)
dσ.

Employing the asymptotic techniques given in [7], we find that, as η → ∞,

J(η) ∼ 2Γ( 1
r )

r
√
π

(
r

λr

)1/r

η1/2 + · · · .

Hence, u has the form given in (5.4), with the constants determined as

C =
2Γ( 1

r )

r
√
π

(
r

λr

)1/r

and d =
1

2
.
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Note that d < 1, which is consistent with our initial requirement. If λr is large
enough so as to advance the damping effect of Fr appearing in the integrand of (5.1),
the leading order behavior of the solution is expected to be square root growth. In
section 5.4, numerical confirmation of this is presented.

5.3. Initiation solutions. Next, we look for solutions of (5.1) that become
unbounded at some finite time value η∗. In the case λr = 0, we know that the
solution of (5.1) has a logarithmic singularity as previously discussed. This motivates
looking for behavior of the form

u ∼ −β log(η∗ − η) + · · · as η → η∗,(5.5)

where β = β(λr) and η∗ = η∗(λr) < ∞. The analysis is facilitated by translating the
singularity to the point at infinity. The techniques given in [7] and [8] can then be
used. In the coordinates

ρ = (η∗ − η)−1, v(ρ) = u(η),

equation (5.1) becomes

v(ρ) =
√
ρ eη

∗
∫ ρ

0

ev−s−1√
π(ρ− s)

s−3/2Fr

(
λre

rη∗
∫ s

0

t−2erv−rt−1

dt

)
ds,(5.6)

and the asymptotic behavior of v is sought as ρ tends to infinity. The cases 1 < r < 2
and r = 2 must be considered separately as they give rise to different matching
requirements.

Suppose 1 < r < 2 and

v ∼ log(ρ1/2) + log(P ) + log(1 + o(ρ1/2)) as ρ → ∞,(5.7)

where P is constant. Then, as ρ → ∞,

ev−1/ρ

ρ3/2
Fr

(
λre

rη∗
∫ ρ

0

t−2erv−rt−1

dt

)
∼ Pρ−1Fr(λre

rη∗
Ir(∞)) + o(ρ−1),

where

Ir(∞) =

∫ ∞

0

erv−r/t

t2
dt < ∞.

By the results in [7] and [8], it follows that

∫ ρ

0

ev−1/s

s3/2
Fr(λre

rη∗
Ir(s))

ds√
π(ρ− s)

∼ P√
π
Fr(λre

rη∗
Ir(∞))ρ−1/2 log(ρ)(5.8)

as ρ → ∞. Comparison of (5.7) and (5.8) yields

P =

√
πe−η∗

2Fr(λrerη
∗Ir(∞))

.

Hence,

v ∼ 1

2
log(ρ) +O(1) as ρ → ∞,
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and, returning to the previous coordinates, we have

u ∼ −1
2
log(η∗ − η) +O(1) as η → η∗.

Different initial assumptions are needed when r = 2. In this case, we look for the
solution of (5.6) to have the asymptotic form

v ∼ log(ρβ) + log(1 + o(ρβ)) as ρ → ∞.(5.9)

Under the assumption (5.9), observe that the integral in the argument of F2 appearing
in (5.6) is finite only if β > 1/2. That is, matching can occur only if we restrict
β > 1/2; this becomes a consistency condition on the analysis. Supposing that this is
the case and that (5.9) holds, we find that

ev−ρ−1

ρ3/2
F2

(
λ2e

2η∗
∫ ρ

0

e2v−2t−1

t2
dt

)
∼

√
π

2
e−η∗

λ−1/2ρ−1
√
2β − 1 + o(ρ−1)

as ρ → ∞. Then, employing the results in [7] and [8],

ρ−1/2e−η∗
v(ρ) ∼ λ

−1/2
2

2
e−η∗√

2β − 1ρ−1/2 log(ρ) as ρ → ∞.(5.10)

Comparing the left- and right-hand sides of this relation and using (5.9), we arrive at
the equation for β:

β(λ2) =
1

4λ2

(
1−

√
1− 4λ2

)
.(5.11)

The following observations should be made about this result. First, note that β > 1/2,
as was required for the derivation. Also, we see that this result makes sense—insofar
as β is real—only for values of λ2 between 0 and 0.25. This seems to suggest an upper
bound of 0.25 on the critical value of λ2. In fact, the numerical analysis confirms this
where we find that λc2 = 0.11998. Finally, we note that β → 1/2 as λ2 → 0, which
is consistent with the results for r < 2 and those in [1] and [3] for the λ = 0 case.
In terms of the variables u and η, the asymptotic results for the initiation case are
summarized:

u ∼ −1
2
log(η∗ − η) + · · · as η → η∗(λr)

for 1 < r < 2, and

u(η) ∼ −β(λ2) log(η
∗(λ2)− η) + · · · as η → η∗(λ2)

for r = 2 with β given by (5.11). In both cases, the value of η∗ is to be determined
numerically.

5.4. Numerical analysis. Equation (5.1) was solved numerically for several
values of r and λr. Because the lower bound of the integral is infinite, the asymptotic
form of the solution u as η → −∞ is useful. Using the properties of the incomplete
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gamma function and the identity∫ η

−∞

eασ√
π(η − σ)

dσ =
eαη√
α

for all α > 0,

we have

u ∼ eη +
1√
2
e2η + · · · as η → −∞,(5.12) ∫ σ

−∞
er(u+s) ds ∼ 1

r
erσ +

r

r + 1
e(r+1)σ + · · · as σ → −∞.(5.13)

We then fix η0 > −∞ and assume that for all η, σ < η0 the relations (5.12) and (5.13)
hold. Substituting (5.12) and (5.13) into (5.1), we arrive at the following equation,
which is solved numerically:

u(η) = eηerfc
√
η − η0 +

1√
2
e2ηerfc

√
2(η − η0)

+

∫ η

η0

eu+σ√
π(η − σ)

Fr (λrIr(σ)) dσ,

where

Ir(σ) =
1

r
erη0 +

r

r + 1
e(r+1)η0 +

∫ σ

η0

er(u+s) ds.

This approach is similar to that applied by Lasseigne and Olmstead [4]. Moreover,
if r = 1, the above reduces to the integral equation considered in [4] for a first order
reaction term. The accuracy of the numerical methods employed in the current work
was tested by comparing the results obtained for r = 1 with those in [4]. The value
η0 = −10 was found to be sufficient to produce reliable results, and this was used for
all numerical trials given in this paper.

6. Results and discussion. For convenience, we restate the definition of the
parameter λr here,

λr = ar/2−1A0b
r

2Br
0

,

and recall that A0 and B0 are measures of the consumption rate of initiator and
heat release due to conversion of monomer, respectively; r (1 < r ≤ 2) is the ratio
of activation energies associated with decomposition of initiator and polymer chain
propagation. We see that λr is small, provided that A0 is relatively small and B0

relatively large. Hence, we can consider large values of λr to indicate an inadequate
amount of initiator (i.e., initiator is consumed too rapidly) or that heat release is
insufficient to sustain further reaction. Conversely, small values of λr represent a
sufficiently exothermic reaction, in which the consumption rate of initiator is small
relative to the amount of initiator present in the mixture. Small λr values are therefore
expected to lead to initiation, while large values of λr are not. The appearance of a
and b in the ratio is the effect of the inert heating, and the values of these parameters
are controlled by the choice of heat source applied. As suggested by the results in [4]
and the self-consistent analyses in sections 5.2 and 5.3 of this paper, there exists a
critical value of λr separating the initiation and noninitiation regimes.
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Table 6.1
The critical parameter value, λc

r, as a function of r.

r 1.5 1.8 1.9 2
λc
r 0.6645 0.31086 0.21058 0.11998

Table 6.2
Initiation time η∗ for selected values of λ2.

λ2 0 0.01 0.1 0.117 0.11997
η∗ -0.4310 -0.4287 -0.4088 -0.4048 -0.4037

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
−2

0
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8

10
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14

16

η

u(
η)

Numerical Results
Asymptotic Approx.

Fig. 6.1. Initiation solution of the integral equation for r = 2 and λ2 = 0.1 The solution
approaches the asymptotic approximation U = −β(0.1) log(η∗ − η) as η → η∗ ≈ −0.4088.

The critical parameter value, λcr, was determined numerically for different r val-
ues. The results are given in Table 6.1. If λr < λcr, then the solution exhibits a
logarithmic singularity, with the asymptotic behavior described in section 5.3. For
values of λr larger than λcr, the solution to (5.1) exists and is finite for all η. When
λr is only slightly larger than the critical value, the solution exhibits behavior on two
time scales (see Figure 6.3). The temperature grows slowly while oscillating on a short
time scale. This results from the competing effects of the exponential term appearing
in (5.1) and the decaying function Fr. If λr is increased further, the solution has the
leading form described in section 5.2.

The time at which initiation occurs for the case r = 2 is given in Table 6.2 for
various λ2, with the critical value found to be 0.11998. Solutions of the types described
above for r = 2 are shown in Figures 6.1–6.4. In Figure 6.1, λ2 is less than the critical
value. The solution becomes unbounded at η = −0.4088. The asymptotic results are
shown as a dashed curve for comparison. Similarly, Figure 6.2 shows the initiation
solution for λ2 = 0.11997, just slightly less than the critical value. In both cases,
the singular behavior indicates that the temperature progresses beyond the transition
stage, and a polymerization front is formed. In contrast, Figures 6.3 and 6.4 show
the solution when λ2 is above the critical value. In Figure 6.3, λ2 = 0.4 and the
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Fig. 6.2. Initiation solution of the integral equation for r = 2 and λ2 = 0.11997, just be-
low the critical value of 0.11998. The solution approaches the asymptotic approximation U =
−β(0.11997) log(η∗ − η) as η → η∗ ≈ −0.4037.
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Fig. 6.3. The noninitiation solution showing oscillation for r = 2 and λ2 = 0.4.

temperature oscillations described can be seen. However, the large scale behavior is
slow growth with the oscillations damping as η increases. Figure 6.4 is a plot of the
solution when λ2 = 1. Here, the solution is monotonic with a change of concavity
occurring in a neighborhood of η = 0. The temperature remains bounded, indicating
that a reaction front does not form.
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Fig. 6.4. The noninitiation solution for r = 2 and λ2 = 1.

7. Summary and conclusion. A reduced system governing a five species reac-
tion model of free radical frontal polymerization was considered, and the temperature
was tracked from the inert heating to the transition stage. Through an asymptotic
analysis, the integral equation (4.13) arose as the first correction to the inert solu-
tion. This integral equation was then rewritten by a change of variables as (5.1),
where there appears the parameter λr which governs the qualitative behavior of the
solution. For a fixed ratio of the activation energies, there is a critical value of the
parameter λcr such that the solution of (5.1) has an infinite singularity in finite time
if λr < λcr but remains bounded for all time if λr > λcr.

The unbounded and bounded types of solutions are taken to indicate initiation
and noninitiation in the underlying system, initiation being the formation and onset
of propagation of a polymerization front. In the noninitiation case, but for values of λr
close to the critical value, an oscillatory type of solution was found numerically. The
solution remains bounded in this case, and it appears that the oscillations dampen
with the growth of the independent variable.

The experimental parameters can be chosen so as to ensure the onset of a thermal
front. The critical temperature Tc used in the scaling can be determined by taking
A0 = 1 in the relation (3.5). This results in a transcendental equation for Tc,

Eeff

RgTc
=

kd(Tc)

keff (Tc)
√
I0

.

Then, B0 can be found in terms of the initial amount of monomer and the heat release
parameter q, and the values a and b are given in terms of the known flux condition.

Some additional comments regarding the relationship of the integral equation (5.1)
to the original system (3.1)–(3.4) and the limitations of the results are in order.
First, we have shown that, under certain conditions, the solution to the integral equa-
tion (5.1) exhibits an infinite singularity at a finite time. This singular behavior is
interpreted as thermal runaway and hence initiation of a polymerization front. This
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does not, however, correspond to blow-up of the solution of the original system (3.1)–
(3.4) of interest in this study. For the system (3.1)–(3.4), there exists a unique, global
solution as indicated by the classical theory of parabolic equations. However, the Ar-
rhenius reaction term produces a large temperature gradient at the site of initiation
so that the temperature profile at the end of the tube exhibits a steep increase to the
maximum temperature in a thin reaction zone. It is this sharp increase in temperature
that is modeled asymptotically by the thermal runaway phenomenon of the integral
equation (5.1).

Second, we note that even in the case when thermal runaway occurs in (5.1)—
i.e., when the parameter values are such that λr < λcr—the front formed requires a
sufficiently large amount of initiator present in the mixture for propagation throughout
the tube. While it is possible to induce runaway by imposing a sufficiently high level
of external energy input at x = 0, this case is not of interest since the reaction will
die off and the polymer will not be produced. Hence, for the results obtained in this
paper to be of practical use, the values of a and b must be assumed to be O(1) and
fixed as prescribed by the externally imposed heat flux. Then, the variation in the
magnitude of λr can be viewed as due to changes in the values of A0 and B0, which
correspond to the physical and chemical properties of any particular mixture.
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