Math 3204: Calculus IV 1	Mikhail Lavrov
Lecture 11: Identifying conservative vector fields	
September 20, 2023	Kennesaw State University

1 Conservative vector fields in \mathbb{R}^{2}

The story so far: we know that if a vector field \mathbf{F} is the gradient $\boldsymbol{\nabla} f$ of some scalar function f, then \mathbf{F} is conservative, which means that line integrals of \mathbf{F} are path independent, and we can even compute them just by evaluating f at the endpoints.

There's just a few problems:

- In order to be able to make use of this in a non-contrived problem, we would have to be able to tell when \mathbf{F} is a gradient field.
- Moreover, given a gradient field \mathbf{F}, we would need a way to find a function f such that $\mathbf{F}=\boldsymbol{\nabla} f$. (Such a function is called a potential function for \mathbf{F}.)

We can already use some techniques from the previous lecture to answer these problems, but they are rather indirect; we can do things in a more straightforward way.

1.1 Some special cases

Let's go back to the three simple vector fields we looked at a few lectures ago (Figure 1.)

Figure 1: Three simple vector fields in \mathbb{R}^{2}
Of these, the vector field $\mathbf{F}=x \mathbf{i}+y \mathbf{j}$ (Figure 1a) is the easiest one to deal with. As single-variable functions, the antiderivative of x is $\frac{x^{2}}{2}$ and the antiderivative of y is $\frac{y^{2}}{2}$. So if $f(x, y)=\frac{x^{2}}{2}+\frac{y^{2}}{2}$, then $\frac{\partial f}{\partial x}=x$ and $\frac{\partial f}{\partial y}=y$, so $\boldsymbol{\nabla} f=x \mathbf{i}+y \mathbf{j}=\mathbf{F}$.

[^0]In fact, more is true. Every vector field \mathbf{F} of the form $g(x) \mathbf{i}+h(y) \mathbf{j}$ is a gradient field (and a similar fact holds in \mathbb{R}^{n}. We just need to find antiderivatives G and H such that $G^{\prime}(x)=g(x)$ and $H^{\prime}(y)=h(y)$; then $f(x, y)=G(x)+H(y)$ is a potential function for \mathbf{F}.

It might not be as obvious that $y \mathbf{i}+x \mathbf{j}$ is the gradient of $x y$, while $-y \mathbf{i}+x \mathbf{j}$ is not the gradient of any scalar function.

1.2 The component test

We will need a result called Clairaut's theorem, which I will state here in full generality.
Theorem 1.1 (Clairaut's theorem). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function of n variables $x_{1}, x_{2}, \ldots, x_{n}$, which has continuous second partial derivatives. Then for every pair of variables x_{i}, x_{j}, and at every point \mathbf{p}, we have

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{p})=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}(\mathbf{p})
$$

Moreover, it's enough for f to be defined, and for the hypotheses to hold, within a small neighborhood of \mathbf{p} (within a ball around \mathbf{p} of arbitrarily small radius).

We will not prove Theorem 1.1, though it can be proven using some tools we'll develop later this semester.

In \mathbb{R}^{2}, the theorem says that for any function f of x and y, if we take the partial derivative with respect to both x and y, then we get the same result no matter which order we do it in. For example, suppose $f(x, y)=x^{3} y+2 y^{3}$. Then

- The partial derivative $\frac{\partial f}{\partial x}$ is $3 x^{2} y$, and the partial derivative of that with respect to y is $\frac{\partial^{2} f}{\partial y \partial x}=$ $3 x^{2}$.
- The partial derivative $\frac{\partial f}{\partial y}$ is $x^{3}+6 y^{2}$, and the partial derivative of that with respect to x is $\frac{\partial^{2} f}{\partial x \partial y}=3 x^{2}$.
This result does not always hold, but it holds provided that f is sufficiently nice, and Theorem 1.1 is one way to specify what "sufficiently nice" means. Even if f is not nice everywhere (or even defined everywhere), we can still apply the theorem a little bit away from the points where f misbehaves.

How are the second partial derivatives relevant to us?
Well, suppose we have $\mathbf{F}=-y \mathbf{i}+x \mathbf{j}$, and we're wondering whether some function $f(x, y)$ exists such that $\frac{\partial f}{\partial x}=-y$ and $\frac{\partial f}{\partial y}=x$. Well, if it did, then we'd be able to compute:

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial y \partial x} & =\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial y}(-y)=-1, \\
\frac{\partial^{2} f}{\partial x \partial y} & =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial}{\partial x}(x)=1 .
\end{aligned}
$$

These are not the same! But Theorem 1.1 says they have to be: and the only hypothesis of the theorem that could possibly be violated here is the existence of f, since we can tell that -1 and 1 are continuous functions defined everywhere.

In full generality, we have a fact called the component test:
Theorem 1.2. If $\mathbf{F}=M \mathbf{i}+N \mathbf{j}$ is a gradient vector field, then $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$.
So if we take these partial derivatives, and we don't get matching results, we know that \mathbf{F} can't possibly be a gradient vector field?
What if we do get matching results? Well, the theorem says "if", not "if and only if". Drawing the reverse conclusion is slightly more complicated; we can only do it sometimes, and it will take a bit before we can explain why.

Still, if we can find a potential function f such that $\mathbf{F}=\nabla f$, then that's definitive. Howe can we do that?

1.3 Finding a potential function

Finding a potential function is a lot like finding an antiderivative, but it is more complicated when we have multiple variables.

For single-variable functions, antiderivatives are indefinite integrals; you may remember that in single-variable calculus, we make a big deal out of including a $+C$ term. For example,

$$
\int \sin 2 x \mathrm{~d} x=-\frac{1}{2} \cos 2 x+C
$$

Sometimes this $+C$ term is actually relevant. For example, if you find the integral above by writing $\sin 2 x$ as $2 \sin x \cos x$, then doing a u-substitution with $u=\sin x$ and $\mathrm{d} u=\cos x \mathrm{~d} x$, we will get

$$
\int 2 \sin \cos \mathrm{~d} x=\int 2 u \mathrm{~d} u=u^{2}+C=\sin ^{2} x+C
$$

What happened. Did we break calculus? No, it's just that $\sin ^{2} x=\frac{1}{2}-\frac{1}{2} \cos 2 x$. So we got two antiderivatives that are off by a constant; that's why the $+C$ term is necessary.

When finding potential functions, the $+C$ term becomes even more important. That's because a partial derivative $\frac{\partial f}{\partial x}$ treats all variables other than x as constants-therefore, when we find the antiderivative, the $+C$ term (an arbitrary "constant" term) can include any variables other than x in it.

Here's an example. Suppose $\mathbf{F}=2 x y^{3} \mathbf{i}+3\left(x^{2}-1\right) y^{2} \mathbf{j}$. We want to know if there is a function $f(x, y)$ such that $\mathbf{F}=\nabla f$.
In particular, this means that $\frac{\partial f}{\partial x}=2 x y^{3}$. We can try to recover f by taking the antiderivative with respect to x :

$$
\int 2 x y^{3} \mathrm{~d} x=x^{2} y^{3}+C
$$

Here, the $+C$ term can hide any function of y. So all we know is: if $\frac{\partial f}{\partial x}=2 x y^{3}$, then $f(x, y)=$ $x^{2} y^{3}+g(y)$ for some single-variable function g.
To figure out what g is, let's use our partial information to find $\frac{\partial f}{\partial y}$: we have

$$
\frac{\partial f}{\partial y}=\frac{\partial}{\partial y}\left(x^{2} y^{3}+g(y)\right)=3 x^{2} y^{2}+\frac{\mathrm{d} g}{\mathrm{~d} y}
$$

But we are hoping to get $\frac{\partial f}{\partial y}=3\left(x^{2}-1\right) y^{2}$. Setting these equal, we get

$$
3 x^{2} y^{2}+\frac{\mathrm{d} g}{\mathrm{~d} y}=3\left(x^{2}-1\right) y^{2} \Longrightarrow \frac{\mathrm{~d} g}{\mathrm{~d} y}=-3 y^{2} .
$$

At this point, we are pleased to see that the expression we got for $\frac{\mathrm{d} g}{\mathrm{~d} y}$ only depends on y. If the righthand side still had x in it, we would conclude that there's no potential function; this is equivalent to the component test.

As it is, taking another antiderivative, we conclude that $g(y)=-y^{3}+C$. We can put everything together and get $f(x, y)=x^{2} y^{3}-y^{3}+C$. As C varies, this gives us all possible potential functions for $\mathbf{F}=2 x y^{3} \mathbf{i}+3\left(x^{2}-1\right) y^{2} \mathbf{j}$.
(By the way, if this process for finding the potential function also tells us if \mathbf{F} is a gradient field, why do we need the component test? Well, in simple examples, we don't. In general, however, finding antiderivatives is much harder than taking derivatives - so the component test can be used to tell us when we don't need to bother.)

2 Conservative fields in \mathbb{R}^{3}

What we've done in two dimensions continues to work in three dimensions, but the calculations become more complicated.

2.1 The component test

If we're trying to test the hypothesis that $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$ is equal to $\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}$ for some f, then there are three partial derivatives we need to check.

Theorem 2.1. If $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$ is a gradient field, then

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}, \quad \frac{\partial M}{\partial z}=\frac{\partial P}{\partial x}, \quad \frac{\partial N}{\partial z}=\frac{\partial P}{\partial y} .
$$

Proof. If $\mathbf{F}=\nabla f$ for some scalar function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, then $\frac{\partial M}{\partial y}=\frac{\partial^{2} f}{\partial y \partial x}$ and $\frac{\partial N}{\partial x}=\frac{\partial^{2} f}{\partial x \partial y}$, so they should be equal. (This is the same check as we did in two dimensions.

Similarly, we should have

$$
\frac{\partial M}{\partial z}=\frac{\partial^{2} f}{\partial z \partial x}=\frac{\partial^{2} f}{\partial x \partial z}=\frac{\partial P}{\partial x}
$$

and

$$
\frac{\partial N}{\partial z}=\frac{\partial^{2} f}{\partial z \partial y}=\frac{\partial^{2} f}{\partial y \partial z}=\frac{\partial P}{\partial y}
$$

which gives us the other two conditions we need to check.
Let's try it on an example: $\mathbf{F}=y^{2} \mathbf{i}+2 x y \mathbf{j}+y^{3} \mathbf{k}$:

- We check $\frac{\partial}{\partial y}\left(y^{2}\right)=2 y$ and $\frac{\partial}{\partial x}(2 x y)=2 y$, so the first condition holds.
- We check $\frac{\partial}{\partial z}\left(y^{2}\right)=\frac{\partial}{\partial x}\left(y^{3}\right)=0$, so the second condition holds.
- However, $\frac{\partial}{\partial z}(2 x y)=0$ while $\frac{\partial}{\partial y}\left(y^{3}\right)=3 y^{2}$, so the third condition does not hold. \mathbf{F} is not conservative: it is not a gradient field.

2.2 Finding a potential function

Let's see how things go if we want to find a potential function for the three-dimensional vector field

$$
\mathbf{F}=\left(2 x y+3 z^{2}\right) \mathbf{i}+\left(x^{2}+4 z^{2}\right) \mathbf{j}+(6 x z+8 y z) \mathbf{k} .
$$

This is similar to our two-dimensional example, but with an extra layer of complexity.

1. Suppose that there is a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $\mathbf{F}=\boldsymbol{\nabla} f$. Then, in particular, $\frac{\partial f}{\partial x}=2 x y+3 z^{2}$. Taking the antiderivative gives us $x^{2} y+3 x z^{2}$, up to a constant; therefore we must have $f(x, y, z)=x^{2} y+3 x z^{2}+g(y, z)$ for some function g.
2. Using this assumption, we compute $\frac{\partial f}{\partial y}$ and set it equal to $x^{2}+4 z^{2}$. We get

$$
x^{2}+\frac{\partial g}{\partial y}=x^{2}+4 z^{2} \Longrightarrow \frac{\partial g}{\partial y}=4 z^{2}
$$

which implies that $g(y, z)=4 y z^{2}+h(z)$ for some function h, and $f(x, y, z)=x^{2} y+3 x z^{2}+$ $4 y z^{2}+h(z)$.
3. Using this assumption, we compute $\frac{\partial f}{\partial z}$ and set it equal to $6 x z+8 y z$. We get

$$
0+6 x z+8 y z+\frac{\mathrm{d} h}{\mathrm{~d} z}=6 x z+8 y z \Longrightarrow \frac{\mathrm{~d} h}{\mathrm{~d} z}=0
$$

so $h(z)$ must actually be a constant.
Our final answer is $f(x, y, z)=x^{2} y+3 x z^{2}+4 y z^{2}+C$, where C can be any constant.

[^0]: ${ }^{1}$ This document comes from the Math 3204 course webpage: http://facultyweb.kennesaw.edu/mlavrov/ courses/3204-fall-2023.php

