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Lecture 13: Curl and divergence in two dimensions
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1 Curl, or circulation density

For the purposes of intuition, we imagine that our vector field F represents the current on the
surface of some body of water. If you toss a small chip of wood into the water, it will float on the
surface. What else will it do?

If the water is perfectly still, it will do nothing. If there is a current in the water, we can say two
things about its movement:

• First, the chip of wood will move with the current. If the body of water is a river, the chip
of wood will float downstream. If the body of water is a sink full of water, the chip of wood
will circle the drain. If we imagine the water doing other, less plausible things, the chip of
wood might have other global behavior.

• There is another effect we can see, which is due to the fact that the chip of wood is not a
perfect point mass; it’s small, but it has some nonzero length. If the water has a different
velocity at different points on the surface, then it’s possible that different parts of the chip
of wood will get pushed by the water at different speeds. This will cause the chip of wood to
turn in place as it floats.

It is the second effect that we will be interested in quantifying today. Let’s begin by looking at
some examples.
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Figure 1: Three vector fields as examples of circulation density

First, consider the vector field F1 = y i shown in Figure 1a. This kind of vector field is sometimes
described as a “shearing flow”. Here, it’s easy to imagine a chip of wood turning in place somewhere
near the x-axis: the top of it gets pushed right, and the bottom gets pushed left, so it spins. Actually,

1This document comes from the Math 3204 course webpage: http://facultyweb.kennesaw.edu/mlavrov/

courses/3204-fall-2023.php
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the same effect happens at every other point, too; if you’re above the x-axis, for instance, the top
of an object gets pushed faster than the bottom, so it spins.

Next, let’s compare the two vector fields Figure 1b and Figure 1c. These both have a global
rotational effect: the chip of wood would be circling the whirlpool. But in Figure 1b, since the
speed increases as we move away from the origin, the chip of wood would also start spinning.
Figure 1c, which shows the dθ example from the previous lecture, does not do this; the chip of
wood would keep its orientation fixed while going around the whirlpool.

We can quantify this effect with a parameter of the vector field that we can call curl2 or circulation
density. This is a number that, at every point (x, y), determines how much spin F puts on an
object at (x, y). To figure out what this number should be, we imagine taking a circulation integral
that goes around a point in a tiny counterclockwise loop. Of course, the result will depend on the
size of the loop somehow—but in what way?

Let’s start with a simple case: F will be a vector field with a linear equation

F = a+ bx+ cy = (a1 + b1x+ c1y) i+ (a2 + b2x+ c2y) j.

To understand the curl of this vector field F at a point (x, y), we will take an integral that goes in
a square around the point, with corners at (x± h, y ± h), as in Figure 2.
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Figure 2: A square circulation integral

The right side of the square is parameterized by r(t) = (x + h, y + t) where t ∈ [−h, h]. We have
F(r(t)) = a+ (x+ h)b+ (y + t)c and dr

dt = j, so F(r(t)) · dr
dt = a2 + (x+ h)b2 + (y + t)c2. We take

the integral and get∫ h

t=−h
(a2 + (x+ h)b2 + (y + t)c2) dt = 2h

(
a2 + xb2 + y0c2

)
+ 2h2b2.

There is a lot going on here, but things will become simpler when we compare this to the left
side of the square. Here, we have r(t) = (x − h, y − t) where t ∈ [−h, h], so F(r(t)) is now
a+ (x− h)b+ (y − t)c and dr

dt is now −j. As a result, this integral becomes∫ h

t=−h
−(a2 + (x− h)b2 + (y − t)c2) dt = −2h

(
a2 + xb2 + yc2

)
+ 2h2b2.

Almost everything in these two integrals cancels, and we are just left with 4h2b2 as the net contri-
bution!

2Actually, “curl” is also referred to a different quantity, which is a vector parameter of a vector field in R3. To
disambiguate, some sources refer to the scalar quantity we discuss today as “the k-component of curl”—but other
sources just refer to both as “curl”.
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Similarly, most of the integral along the top side will cancel with most of the integral along the
bottom side. I will skip the details, since they’re very similar, but we’ll get∫ h

t=−h
−(a1 + (x+ t)b1 + (y + h)b1) dt+

∫ h

t=−h
(a1 + (x+ t)b1 + (y − h)c1) dt

which simplifies to −4h2c1 as the net contribution. Putting the two pieces together, we get (b2 −
c1)4h

2.

The quantity 4h2 is the area of the square. So we can think of the quantity b2 − c1 as the circu-
lation density of the vector field F: it’s a quantity, that when you multiply it by an area, gives a
circulation.

From here, we can generalize to an arbitrary vector field F = M i+N j. We would not be able to
get an equally nice exact formula for the circulation of F around the square. But if we take the
first-order Taylor series approximation of F near a point (x, y), we will get a vector field with a
linear equation like the one we dealt with—with b1 = ∂M

∂x , c1 = ∂M
∂y , b2 = ∂N

∂x , and c2 = ∂N
∂y . For

the linear approximation, we will get a circulation of (∂N∂x − ∂M
∂y )4h2. There will be an error in

the approximation, but the error term on F will be quadratic in h, and integrated over a curve of
length 8h, for a result that’s cubic in h. As a result,

lim
h→0

∫
□
F · dr

4h2
= lim

h→0

(
∂N

∂x
− ∂M

∂y

)
4h2 +O(h3)

4h2
=

∂N

∂x
− ∂M

∂y
.

(I’m using O(h3) to stand in for an error term that is cubic in h, and □ to stand in for the curve
that goes around the square in Figure 2.)

So it makes sense to say that in general, ∂N
∂x − ∂M

∂y is the circulation density of F at a point.

This also has connections to what we’ve previously done:

• By the component test, if F is conservative, then ∂N
∂x − ∂M

∂y = 0. This makes sense. For
conservative fields, all circulation integrals around closed curves will be 0, and that includes
circulation integrals around our tiny squares.

The quantity ∂N
∂x − ∂M

∂y could be reasonably interpreted as a measure of how much F fails to
be conservative.

• We have seen the difference ∂N
∂x − ∂M

∂y once before. When we were working out a general
formula for the exterior derivative of a 1-form M dx+N dy, we got

d(M dx+N dy) =

(
∂N

∂x
− ∂M

∂y

)
dx ∧ dy.

The exterior derivative gave us the circulation density!

For now, we will write this quantity ∂N
∂x − ∂M

∂y as curl(F) and call it the curl of F or the circulation

density of F. A word of warning: right now, we are only considering vector fields in R2, and talking
about curl will become more complicated when we get to R3.
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2 Divergence, or flux density

We can think about flux integrals in a similar way, except that currents of water flow are a somewhat
weird metaphor to use. Suppose you have a closed curve C on the surface of a body of water. What
would it mean for the current to have a positive outward flux across C? It would mean that, on
net, water is leaving the region bounded by C. This shouldn’t generally be happening over any
length of time.

Air currents (like a wind map) are a different matter. If the region bounded by C is a high-pressure
area that’s decreasing in pressure, then we do expect an outward flux across C: for the air pressure
to decrease, air must flow out, allowing the remaining air inside C to be less dense.
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x

y

(c) F = −y i+ x j

Figure 3: Three vector fields as examples of flux density

This is exactly the sort of thing that’s happening, for example, in Figure 3a. If the air is expanding
by a constant amount at every point of the plane, then we’ll get a vector field pointing outward from
some central fixed point. The larger the region where this is happening, the higher the magnitude
of the vector field around the boundary will be (because that means more air is trying to get out).
This vector field is a lot like what we’d see in an explosion.

Figure 3b is the reverse of this. Here, we would get a negative outward flux across every closed
curve.

Figure 3c is a vector field we already looked at once today. Here, though the vector field is going
faster and faster around the origin as we go out, there’s no expansion or contraction going on. If
we took a flux integral across any closed curve, we would get 0.

(x, y)
h

h

Figure 4: A square flux integral

Just as before, we can measure this by a quantity at every point, which we will call divergence
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or flux density and denote divF. We can try to understand what this should be, as before, by
looking at the outward flux across the boundary of a very small square. What will we get?

Let’s try to derive a formula for divF by a different, less rigorous and more intuitive argument.
Suppose that, once again, we draw a curve that goes in a square with corners (x±h, y±h) around
a point (x, y). (Figure 4 shows this square, though it’s the same picture as Figure 2 was.)

The right side of the square goes from (x+h, y−h) to (x+h, y+h), with normal vector i. Though F
varies along this segment, on average it will be equal to F(x+h, y): its value at the midpoint of the
segment. So we can estimate the flux across the right side of the square as F(x+h, y)·i = M(x+h, y).
Actually, this is M(x+ h, y) · 2h, because this flux is crossing a segment of length 2h.

For the left side of the square, the outward normal vector is −i, and the value of F is on average
F(x− h, y), and we will get a flux of −M(x− h, y) · 2h.

The net contribution from these two sides is
(
M(x+ h, y)−M(x− h, y)

)
· 2h, or

M(x+ h, y)−M(x− h, y)

2h
· 4h2 ≈ ∂M

∂x
· 4h2.

Similarly, from the top and bottom side, we will get a net outward flux of ∂N
∂y · 4h2. Factoring

out the area of the square, 4h2, we see that it makes sense to define the flux density as divF =
∂M
∂x + ∂N

∂y .

We can check by calculation what divF will be in the three vector fields of Figure 3: we get
divF = 2 at every point in Figure 3a, divF = −2 at every point in Figure 3b, and divF = 0 at
every point in Figure 3c.
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