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1 What is a parameterization of a surface?

1.1 Defining parameterizations

When we were dealing with curves in R? and R3, we gave them parameterizations: functions
r: [a,b] — R? and r: [a,b] — R3. We are about to begin the study of surfaces in R3, and we will
want to give them parameterizations, too. What should that mean?

At the very least, it is certain that we will want a parameterization r to be a function D — R3,
where D is some subset of the plane. The surface S should be the image of r: the set

S = {r(u,v) : (u,v) € D}.

Not all functions are equally good, though. Lets consider some possibilities.

The first question is the domain. Suppose that we want to describe the top half of a unit sphere:
the set of points (z,y, ) with 22 + y? + 22 = 1 and z > 0. There are two approaches:

e One is to solve for z, and set z = \/1 — 22 — y2. Then, we can take the parameterization

r(u,v) = (u,v, V1 —u?—0?2)

whose domain D is a disk: the set of all points (u,v) € R? with u? +v? < 1.

e In spherical coordinates (p, 0, ®), this hemisphere is described by p = 1, 0 < 6 < 27, and
0 < ¢ < 7w/2. Converting back to rectangular coordinates, we get a parameterization in
terms of ¢ and 6:

r(¢,0) = (sin ¢ cos b, sin psin b, cos ¢)

where (¢, 6) lies in the rectangular region [0,7/2] x [0,27]. (We can also, if we like, rename
¢ and 0 to u and v.)

The second parameterization is better for several reasons. First of all, we will eventually want to
integrate something over the domain of the parameterization, and writing an integral

w/2 2w
/ ... dods
¢=0 J6=0

is much better than writing an integral over the disk D. Second, it generalizes better to other
partial spheres. Finally, the rectangular bounds make it easier to describe the boundary of the
surface, which will also be important to us later.
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For this reason, we make a distinction between two types of parameterizations. We will say that a
function r: [a,b] x [¢,d] — R3 is a rectangular-domain parameterization (provided that it satisfies
some injectivity requirements we’ll discuss in a moment). Meanwhile, a function r: D — R3, where
D can be any subset of the plane, will be called a wacky-domain parameterization. (Needless to
say, this terminology is not commonly accepted.)

Most of our theorems and formulas can be stated in general for wacky-domain parameterizations,
so we will do that whenever possible. Aside from that, we will assume all our parameterizations are
rectangular-domain parameterizations. (When I ask you to find a parameterization, please assume
that I mean a rectangular-domain parameterization.) It will usually be best to use rectangular-
domain parameterizations for evaluating surface integrals (unless we are in an exceptional case
where some other domain makes life much simpler).

In either case, there are additional requirements on the behavior of the function r. First of all, r
should be sufficiently nice to do calculus with; at the very least, its components should have contin-
uous partial derivatives with respect to both variables. Second, it should be mostly injective.

I say “mostly” because if we look at our spherical parameterization r(¢, ), we see several failures
of injectivity. First of all, we have r(¢,0) = r(¢,27) for any ¢. Even worse, when we set ¢ = 0,
then for all possible values of 6, r(0,0) gives us the same point (0,0,1). However, both of these
things happen on the boundary of the rectangle [0,7/2] x [0, 27|, which is generally acceptable.
It is a lot like a single-variable parameterization r(t), where if ¢ ranges over [a,b], we might see

r(a) =r(b).

If the parameterization fails to be injective somewhere other than the boundary of its domain, that
could be worse. At best, it means our surface is self-intersecting, which can produce unintuitive
results. At worst, it could mean that the parameterization folds back in on itself, representing a
part of the surface multiple times; in that case, many of our formulas will just give wrong answers.
Avoid this!

1.2 Ways to think about parameterizations

There are (at least) three intuitions you can have for what a parameterization does. See which of
these resonate with you; if possible, try to think about it in multiple ways.

e Imagine the domain D of the parameterization r: D — R3 as a piece of rubber. (Ideally, a
rectangular piece of rubber!)

Then, the parameterization r tells us how to bend and stretch the piece of rubber to fit it to
the shape of the surface we want to understand.

e Imagine that the surface we are parameterizing is a world inhabited by people. Those people
want to have coordinates for their surface to talk about where they are: these are pairs (u, v)
that represent their location. (This is how latitude and longitude work for us: people living
on the surface of a sphere.)

The parameterization r is the function that interprets those coordinates: given a pair (u,v),
it outputs the point r(u,v) on the surface which is represented by those coordinates.

e You have already spent some time working with parameterizations of curves r: [a,b] — R3.



We can leverage that understanding: a surface is just made up of many curves, and a surface
parameterization is just made up of many curve parameterizations.

If r: [a,b] x [c,d] — R? is a parameterization of a surface, then for every value of u € [a, b],
we can define a function ry: [¢,d] — R? by r,(v) = r(u,v). Each of these functions r, is
the parameterization of a curve in R3. As u changes from a to b, the curve changes, and the
changing curves sweep out a surface.

For example, given the parameterization of a hemisphere by r(¢, 8) = (sin ¢ cos 0, sin ¢ sin 6, cos ¢)
where (¢, 0) € [0,7/2] x [0,27], we can look at the curve parameterized by ryg for a fixed ¢.
This is a circle in the plane z = cos ¢ which is centered at (0,0, cos ¢) and has radius sin ¢. As
¢ changes from 0 to 7/2, the circle expands and moves down, sweeping out the hemisphere.

We could also look at the curve parameterized by ry for a fixed 6. This is an arc in the shape
of a quarter-circle starting at (0,0, 1) and ending at (cosf,sin6,0). As 6 changes from 0 to
27, the arc rotates around the z-axis, sweeping out the hemisphere in a different way.

These analogies are going to be helpful when coming up with parameterizations of tricky sur-
faces.

2 Examples of parameterizations

Let’s parameterize some surfaces.

2.1 Surfaces above a rectangle

A good case to start with is a surface which is given by an equation z = f(z,y), and is bounded by
separate inequalities on z and y: @ < x < b and ¢ <y < d. (We can imagine the surface as lying
above the rectangle [a,b] X [c,d] in the zy-plane, but nothing changes if the surface is sometimes
or always below that plane.)

In this case, our parameterization can look very simple: set *+ = v and y = v. We have
r(u,0) = (v, F(w,0),  (u,0) € [a,b] X [c,d).

There is nothing special about the variables x and y, of course. For example, suppose that we start
with the cylinder 2 + y? = 1, where 0 < z < 1, and chop it in half, taking only the half with
y > 0 as well. Then this cylinder is a surface given by the equation y = v/1 — x2, where z is free
to range from —1 to 1, and z still goes from 0 to 1. So if we set © = v and z = v, we get the
parameterization

r(u,v) = (u, V1 —u?v), (u,v) € [-1,1] x [0,1].

(We would not be able to use this parameterization for the whole cylinder, because then, there
would be multiple values of y for the same (z, z) pair.)

When the surface is given by an equation z = f(z,y), and lies above a region D in the xy-plane
that’s not a rectangle, this could theoretically be a reason to use a wacky-domain parameterization.
Emphasis on “could”. You should stop to think if you have any alternatives.



One of the alternatives you might find is to use a different coordinate system for the region D
which makes it rectangular. To give an example, let’s take the surface z = 22 — 2, but bound z
and y by the inequality |z| + |y| < 1, which forms a diamond in the zy-plane. It’s true, we could
parameterize this region by r(u,v) = (u,v,u? — v?), where (u,v) are points in this diamond. But

think about it; is there anything else we can do?

If we were taking a double integral over the diamond {(z,y) € R? : |z|+|y| < 1}, we might consider
a uv-substitution: we’d set v = z + y and v = z — y, so that the sides of the diamond are now
defined by the inequalities —1 < u < 1 and —1 < v < 1. We can do the same thing here! Solving
for z and y, we get x = “Qﬂ vy

and y = “5%. Meanwhile, z = 2% — y* = (z + y)(x — y) is just the
product uv. So our surface has the much nicer parameterization

r(u, v) = (“;” “;”uv> . (ww) e [-1,1] x [-1,1].

While we’re on the topic of substitutions, it often helps to check whether our surface can be
described easily in cylindrical or spherical coordinates. An especially common scenario: if our
surface has the equation z = f(x,y), but the bounds on x and y give the shape of a circle in
the zy-plane (or some other “round”) shape, then maybe we can rewrite z in terms of r and 6
and set r = u, § = v. In such cases, it’s important not to forget that the formula for r(u,v)

should always be in rectangular coordinates. Cylindrical coordinates are just a source of
inspiration!

For example, suppose we decide to take the infinite paraboloid z = 2% 4+ y?, and cut it off by the
inequality z < 3. That inequality is equivalent to the inequality x? + y? < 3, defining a circle of
radius v/3 in the zy-plane. So we decide to switch to cylindrical coordinates.

In cylindrical coordinates, z = 72, r ranges from 0 to /3, and 6 ranges from 0 to 2. So we set

r =u and 6 = v, and prepare to write down our parameterization. Using the coordinate change
formulas, = rcosf = wcosv, while y = rsinf = usinv. Again, z = r?> = u?. So we get the

parameterization

r(u,v) = (ucosv, usinwv, u?), (u,v) € [0,V3] x [0, 27].

2.2 Transformations

It might turn out that the tools we’ve discovered so far almost, but not quite, let us describe the
surface we want. We just need to modify our surface slightly. Well, there are a few transformations
of R3 that are easy to describe with coordinates, so they’re easy to apply to our parameteriza-
tions.

First, we can translate our surface by a vector. If we add constants a, b, ¢ to the three components
of r(u,v), that shifts every point of our surface by the vector ai+ bj + ck. For example,

r(u,v) = (ucosv + 1,usinv + 2,u% + 3), (u,v) € [0,v3] x [0, 27]

defines another paraboloid congruent to the first, but its vertex is now at the point (1,2, 3) instead
of (0,0,0).



We can scale the coordinates, together or independently of each other, by multiplying them by
constants. For example,

1

r(u,v) = (ucosv, yu sin v, u?), (u,v) € [0,v3] x [0, 27]

takes the paraboloid and squishes it in the y-direction, making it have half the width in that
direction. Usually, we want to scale before translating, because scaling fixes the point (0,0,0) in
place, and we want to do this operation while (0,0, 0) is still a meaningful point to keep fixed.

Rotations and reflections are another powerful tool. In previous lectures, we've already seen how
some of these can be accomplished just by swapping around coordinates, and that continues to
be true for surfaces. Other, more complicated rotations properly should be studied in a linear
algebra class. For example, a rotation by 45° around the z-axis can be accomplished by the linear
transformation

x 1 0 0 x
y| = [0 v2/2 —v2/2| |y
z 0 v2/2 V2/2] |2

Apply this transformation to our paraboloid, and you’ll get

2 2 2 2
r(u,v) = <ucos v, \2[ sinv — \gu2, \2[ sinv + \gu2> , (u,v) € [0,v3] x [0, 27].

This is still a paraboloid whose vertex is at (0,0, 0), but now it opens in the direction of the diagonal
vector —j + k rather than the vertical vector k.

2.3 A tricky example

If you take a long and narrow strip of paper, give it a half-twist, and then tape the two ends
together, you get an unusual surface called a Mo&bius strip. This is a surface with some weird
properties: if you imagine an ant crawling along the strip of paper, then once it makes a full loop,
it will end up on the other side of the paper from where it started! In a sense, the Mdbius strip is
a “one-sided” surface.

That property of the Mdébius strip will actually make it an important example for us to consider
later, but for now, let’s just give it a parameterization.

As our prototype, let’s take a “non-Mobius” strip: a loop of paper that doesn’t twist at all. This is
essentially the curved boundary of a wide and short cylinder. Let’s say that the cylinder has radius
5, and ranges vertically from z = 1 to z = —1; I've made the range of z symmetric, because the
“center” of the strip, where z = 0, will be useful to us later. The parameterization now is

r(u,v) = (5cosu,bsinu,v), (u,v) € [0,27] x [—1,1].

I think a good way to visualize how we want to twist the strip of paper is to imagine it as a surface
swept out by the curve r,(v) as u varies from 0 to 27. For a fixed w, this is just a segment of length
2 from one side of the strip to the other: from (5cosu,5sinwv, —1) to (5cosu,5sinv,1).

To make this segment “twist” as we go, we should have it rotate about its center. This is easiest to
visualize in cylindrical coordinates, in the rz-half-plane. In that half-plane, our untwisted segment
starts from (r,z) = (5, —1), and goes from (r, z) = (5,1).



To rotate it by an angle a about the point (r,z) = (5,0), we can write the starting point as
(r,z) = (5 + sina, — cos ) and the ending point as (r,z) = (5 — sin«, cos ). The entire segment
would then have r =5 —vsina and z = 5 + v cos a.

How should « depend on the angle u (in other words, on )7 It is tempting to set & = w. But in
that case, the segment will make a full 360° rotation about its center just as it makes a full 360°
revolution about the z-axis. That would be a full twist, joining up the same side of the strip of
paper. To get a Mobius strip, we want it to rotate half as fast, so we set o = u/2.

We now know our cylindrical coordinates: they are
U
r=>5—wvsin—
2

u
_5 —
z = —|—UCOS2

0=u

where u € [0,27] and v € [—1,1]. To get our parameterization, we convert back to rectangular
coordinates, with x = rcos# and y = rsinf. Our final answer is

r(u,v) = ((5 — vsin %) cos u, (5 — vsin g) sinw, 5 + v cos %) ; (u,v) € [0,27] x [—1,1].

Here is the surface we’ve described:
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