
Math 3204: Calculus IV1 Mikhail Lavrov

Lecture 27: More about the divergence theorem

November 29, 2023 Kennesaw State University

1 The divergence theorem with differential forms

1.1 The exterior derivative of a 2-form

In the language of differential forms, we think of the surface integral of a vector field M i+N j+P k
as an integral of the 2-form

ω = M dy ∧ dz +N dz ∧ dx+ P dx ∧ dy.

The divergence theorem can be stated in terms of the exterior derivative dω. This is defined in the
same way as we defined the exterior derivative of functions and of 1-forms:

dω = dM ∧ dy ∧ dz + dN ∧ dz ∧ dx+ dP ∧ dx ∧ dy.

But how does this simplify? We have dM = ∂M
∂x dx+∂M

∂y dy+∂M
∂z dz, but by the rule that du∧du = 0,

dM ∧ dy ∧ dz only keeps the first of these three terms: it is equal to ∂M
∂x dx ∧ dy ∧ dz. Similarly,

dN ∧ dz ∧ dx simplifies to ∂N
∂y dy ∧ dz ∧ dx, and dP ∧ dx ∧ dy simplifies to ∂P

∂z dz ∧ dx ∧ dy.

These are all 3-forms, and with 3-forms, it looks like there are many orders for the differential
elements in the wedge product. (Previously, with 2-forms, we only had to deal with dx ∧ dy and
dy ∧ dx = −(dx ∧ dy).) However, the rule that du ∧ dv = −(dv ∧ du) lets us turn all triple wedge
products of dx, dy, and dz into either dx ∧ dy ∧ dz or its negation:

• When we encounter the term dy ∧ dz ∧ dx, we can rewrite it as −(dy ∧ dx∧ dz) by swapping
the last two differentials, and then as dx ∧ dy ∧ dz by swapping the first two.

• Similarly, dz ∧ dx ∧ dy turns into dx ∧ dy ∧ dz by first swapping the first two differentials,
then swapping the last two.

• On the other hand, dx∧dz∧dy, dy∧dx∧dz, and dz∧dy∧dx all simplify to −(dx∧dy∧dz).

In particular, in our formula for dω, all three terms have a triple wedge product that simplifies to
dx ∧ dy ∧ dz, so we get

dω =

(
∂M

∂x
+

∂N

∂y
+

∂P

∂z

)
dx ∧ dy ∧ dz.

The exterior derivative of a 2-form computes the divergence of the corresponding vector field!

This lets us write the divergence theorem (for a solid region D with boundary S)∫∫
S
F · ndS =

∫∫∫
D
∇ · FdV

1This document comes from the Math 3204 course webpage: http://facultyweb.kennesaw.edu/mlavrov/

courses/3204-fall-2023.php
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in the by-now-familiar form ∫∫
S
ω =

∫∫∫
D
dω

where ω = M dy ∧ dz +N dz ∧ dx+ P dx ∧ dy.

There is one difference. Thus far, we’ve stated the divergence theorem as saying that the outward
flux across S is equal to the divergence integral over D. The differential form of the divergence
theorem does not specify that the flux must be an outward flux; instead, it turns both integrals
into oriented integrals.

If we then adopt the convention that an oriented integral of dx∧dy∧dz is positive, that corresponds
to choosing an orientation for D, so we must choose a compatible orientation for S, and the com-
patible orientation for S is the outward orientation. This is a bit confusing to think about, because
it’s not natural for us to think of giving R3 an orientation—four-dimensional mathematicians who
could look at R3 from the outside would find that easier!

1.2 Divergence and curl

Remember the general result we proved for differential forms that d(dω) = 0? If we apply it
when ω = f , a function (or 0-form), then df corresponds to taking the gradient of f , and d(df)
corresponds to taking the curl of that gradient. In this way, we obtain the rule that

∇×∇f = 0.

The curl of a gradient is the zero vector! (This is the “component test” for seeing if a vector field
could be a gradient field.)

But we can apply the same rule d(dω) to the 1-form ω = M dx + N dy + P dz. In this case,
dω corresponds to taking the curl of F = M i + N j + P k, and d(dω) corresponds to taking the
divergence of that curl. In this way, we obtain the rule that

∇ · (∇× F) = 0.

The divergence of a curl is zero!

We can think of this, too, as a test for whether a vector field is the curl of another vector field.
Such a vector field is special, because it means that:

• The flux of such a vector field across the boundary of any solid region is 0, because the
divergence theorem turns that flux integral into an integral of 0 over the solid region.

• Given two surfaces with the same boundary, the fluxes across the two surfaces must be the
same, since F being the curl of another vector field means that Stokes’ theorem applies to it.

There are many terms for vector fields with divergence 0. They are naturally called divergence-
free vector fields. Because divergence measures compression and/or expansion at a point, they
are also called incompressible vector fields—and the velocity fields of incompressible substances
naturally have this property. Wikipedia also tells me that they are called solenoidal vector fields,
for reasons I do not know. Of course, if F is the curl of another vector field, we can call F a curl
vector field and be understood. Finally, in the language of differential forms, we can talk about
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exact 2-forms (which are the exterior derivative, or curl, of some 1-form) and about closed 2-forms
(whose exterior derivative, or divergence, is 0).

As before, checking whether F is a curl vector field by checking whether ∇ · F = 0 is a one-way
test, in general. If we get a nonzero value, then F is definitely not a curl vector field. If we get a
zero value, then we quibble and hem and haw and there are weird counterexamples with undefined
points. However, provided that the domain of F is all of R3, then the test is an if-and-only-if
condition.

2 A proof of the divergence theorem

2.1 Division into pieces

An important observation (which we made in special cases in the previous lecture) is the following.
Suppose that a solid region D ⊆ R3 is the union D1 ∪D2 of two smaller regions, and that D1 and
D2 either do not intersect at all, or else their intersection has zero volume. (For example, if we
chop a solid sphere in half, the two halves intersect along a circle in the plane where we chopped;
that’s an intersection with zero volume.)

In this case, at least when D, D1, and D2 are all reasonable regions, we have∫∫∫
D
∇ · FdV =

∫∫∫
D1

∇ · FdV +

∫∫∫
D2

∇ · FdV (1)

for any vector field F. In fact, a version of (1) should hold no matter what we integrate, even if
it’s not the divergence of anything.

Let S, S1, and S2 be the outward-oriented surfaces bounding D, D1, and D2, respectively. Then
the divergence theorem, applied to every integral in (1), tells us that∫∫

S
F · ndS =

∫∫
S1

F · ndS +

∫∫
S2

F · ndS. (2)

In fact, if we’re going to be proving the divergence theorem, it will be convenient for us to establish
that (2) holds without using that theorem—because we would like to use (2) in the proof!

If the regions D1 and D2 are far away from each other and don’t touch at all (in which case,
D is made up of two separated pieces), then there’s nothing to check, really. The integrals on
the right-hand side of (2) are just two completely separate parts of the integral on the left-hand
side.

Something more subtle happens when D1 and D2 share a boundary: when they touch along an
entire surface S1 ∩ S2. In that case, both integrals on the right-hand side of (2) include flux across
S1 ∩ S2, but the left-hand side does not include it at all. (If D1 and D2 touch along S1 ∩ S2, then
some part of D is present on both sides of S1 ∩ S2, which means that S1 ∩ S2 is not a boundary of
D.)

What saves us in this case is orientation. All three flux integrals in (2) are outward-oriented, but
for the intersection S1 ∩ S2, “outward” is context-sensitive. On one side of S1 ∩ S2 lies region D1;
on the other side, region D2. In the outward flux integral across S1, we measure the D1-to-D2 flux
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of F; in the outward flux integral across S2, we measure the D2-to-D1 flux. These are equal but
opposite quantities; when we add together the integrals, they cancel. Thus, the flux across S1 ∩ S2

makes no net contribution to either side of (2), and the equation still holds.

2.2 A proof using stripes

There are two styles, so to speak, to proofs of these differential theorems from scratch. When we
proved Green’s theorem, we took one of the main approaches: we divided our region into cells, and
looked at each cell individually. (When we proved Stokes’ theorem, we took the lazy way out and
appealed to Green’s theorem.)

Here, we will look at a different style of proof; instead of dividing into cells, we will divide into
columns. We could have used this technique to prove Green’s theorem, and we could use our
previous technique to prove the divergence theorem, but variety is the spice of life.

First, we simplify the problem. Instead of proving the theorem for all vector fields in general,
it’s enough to prove it for F = P k: vector fields with M = N = 0. The same technique with
the variables permuted will apply to vector fields of the form M i or N j. Finally, once we have
those cases handled, we can just add all three types together, because both sides of the divergence
theorem are linear.

Second, we simplify the problem. Instead of looking at arbitrary regions, we will look at regions
D bounded from below by a surface S− that lies on the graph of f−(x, y, z) = 0, from above by a
surface S+ that lies on the graph of f+(x, y, z) = 0, and constrained on the sides by the condition
(x, y) ∈ R for some region R ⊆ R2. Not all regions have this form—but sufficiently nice regions
can be chopped up into several pieces that have this form. You should imagine the cylinder with
x2 + y2 ≤ 1 and −1 ≤ z ≤ 1 for a simple example; here, R is the unit disk in the xy-plane, S− is
the portion of the plane z = −1 below this disk, and S+ is the portion of the plane z = 1 above
this disk.

The boundary of this region has three parts to it: the surface S−, oriented downward; the surface
S+, oriented upward; and the lateral boundary. We can ignore the lateral boundary, however,
because our vector field F = P k is tangent to it, so it has zero flux across it.

For the surface S+, oriented upward, we can write the flux integral as∫∫
S+

F · ndS =

∫∫
R

F · ∇f+

∇f+ · k
dA =

∫∫
R

P k · ∇f+

∇f+ · k
dA =

∫∫
R
P dA.

For the surface S−, oriented downward, we can write the flux integral as∫∫
S−

F · ndS =

∫∫
R

F · ∇f+

−∇f+ · k dA =

∫∫
R

P k · ∇f+

∇f+ · k dA =

∫∫
R
−P dA.

We add these two flux integrals and get 0, proving that all flux integrals are 0. . . just kidding!

The problem is with our notation. In both of these flux integrals, P is a function of x, y, and z,
which is meant to be evaluated on the surface S+ or S−, respectively. If we rewrite f±(x, y, z) = 0
as z = h±(x, y), solving for z, then the proper way to write what we’ve just done is∫∫

S+

F · ndS =

∫∫
R
P (x, y, h+(x, y)) dA and

∫∫
S−

F · ndS =

∫∫
R
−P (x, y, h−(x, y)) dA.
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Their sum, the net flux out of D, is the integral∫∫
R

(
P (x, y, h+(x, y))− P (x, y, h−(x, y))

)
dA.

Now we apply the fundamental theorem of calculus to say that

P (x, y, h+(x, y))− P (x, y, h−(x, y)) =

∫ h+(x,y)

z=h−(x,y)

∂P

∂z
(x, y, z) dz.

This lets us rewrite our net flux out of D as∫∫
(x,y)∈R

∫ h+(x,y)

z=h−(x,y)

∂P

∂z
dz dy dx

which is precisely the divergence integral of F over D! The divergence of F = P k is just ∂P
∂z , and

to integrate over D with z as the variable of the innermost integral, we let (x, y) range over R and
then let z range from h−(x, y) to h+(x, y).

So we’ve shown that the net flux of F out of D is equal to the integral of the divergence of F
over D, which proves the divergence theorem in our special case—and, as we argued earlier, this is
enough to conclude that it holds in general.

3 The divergence theorem and volume

Just as we can use Green’s theorem to compute the area of a region in R2, we can use the divergence
theorem to compute the volume of a region in R3. For this, we cook up a vector field F such that
∇·F = 1. There are many possibilities here: we can add any divergence-free vector field to F, and
it will not change the value of ∇ · F. Two natural choices are:

• F = x i; then ∇ · F = ∂
∂xx = 1.

• F = x i+y j+z k
3 ; then ∇ · F = ∂

∂x
x
3 + ∂

∂y
y
3 + ∂

∂z
z
3 = 1

3 + 1
3 + 1

3 = 1.

The first has the advantage of simplicity; the second has the advantage of symmetry.

In both cases, for any solid region D with boundary S, we can compute∫∫
S
F · ndS =

∫∫∫
D
∇ · FdV =

∫∫∫
D
dV

and get the volume of D. When F = x i, a convenient way to write this is∫∫∫
D
dV =

∫∫
S
x dy ∧ dz.

We can also be more general. If ∇ · F is any constant c, then the flux of F across S will give c
times the volume of D.

For example, let’s use this to compute the volume of a cone. Our cone will have height H and
radius R (I am using capital letters to indicate that these are constants, to avoid confusion with
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the variable r). Its base is a circle of radius R in the xy-plane centered at (0, 0) and its vertex is
at (0, 0, H).

It is the flexibility of choice of vector field F that makes the divergence theorem more powerful as
a tool here. If we were to use x i, y j, or z k as our vector field in this example, we would be back
to the ordinary computation for the volume of a cone by triple integral. Instead, let’s be sneaky
and choose F = x i+ y j+ (z −H)k, with ∇ · F = 3.

Why did we choose this vector field F? Because, for any point (x, y, z), F is the displacement vector
that points from (0, 0, H) to (x, y, z). If we look at a point on the lateral surface of our cone, this
displacement vector is tangent to the cone. Therefore the flux of F across this lateral surface will
be 0.

As a result, the flux of F across the boundary of the cone is entirely equal to the flux across the
bottom face: the base of the cone. Here, the normal vector is n = −k, so F ·n = −(z−H) = H−z,
and because the base of the cone lies in the plane z = 0, this simplifies toH. We conclude that∫∫∫

D
3 dV = iintBH dS

where D is the cone and B is its base. In other words, 3 times the volume is equal to H times the
area of the base. The base has area πR2, and therefore the volume is 1

3πR
2H.
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