
Math 3204: Calculus IV1 Mikhail Lavrov

Lecture 28: Putting it all together

December 4, 2023 Kennesaw State University

0 Why?

Today’s lecture notes turned out to be really, really long.

I will not cover most of this in class. My goal for the last lecture is just to show you how the
different theorems we’ve learned this semester fit together, and if there’s time at the end, we can
spend it on review.

But I wanted to at least present, as a resource for you to refer to if you’d like, the way that
everything we’ve done generalizes to k-dimensional objects in n-dimensional space. I think that
this is the only way to see how the definitions we’ve made are the right definitions to make, and
the integrals we’ve taken are the right integrals to take.

1 Vector integral theorems

Here is a summary of the theorems we’ve seen that relate two vector integrals over objects of
different dimensions.

Theorem 1.1 (Fundamental theorem of line integrals). Let C be an oriented curve in R3 that
starts at point a and ends at point b; let f : R3 → R be a scalar function. Then∫

C
∇f ·Tds = f(b)− f(a).

As a special case, if C is a closed curve (it starts where it ends), then the line integral of ∇f
around C is 0.

Theorem 1.2 (Stokes’ theorem). Let S be an oriented surface in R3 and let C be its compatibly
oriented boundary; let F : R3 → R3 be a vector field. Then∫∫

S
(∇× F) · ndS =

∫
C
F ·Tds.

As a special case, if S is a closed surface (it has no boundary), then the flux integral of ∇ × F
across S is 0.

Green’s theorem is another special case of this theorem—it is what we get if S is a flat region in R2.

Theorem 1.3 (Divergence theorem). Let D be a solid region in R3 and let S be its outward-oriented
boundary; let F : R3 → R3 be a vector field. Then∫∫∫

D
∇ · FdV =

∫∫
S
F · ndS.

1This document comes from the Math 3204 course webpage: http://facultyweb.kennesaw.edu/mlavrov/

courses/3204-fall-2023.php
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It is easy to superficially say that these theorems are all saying the same thing: integrating some
kind of “vector-like derivative” of a function over an object gives the same result as integrating
the original function over the boundary of that object. I find this kind of observation somewhat
frustrating, because it doesn’t tell you enough about what to expect in situations you haven’t seen
before. What tells us that the curl ∇ × F is the correct derivative to take in Stokes’ theorem,
and the divergence ∇ · F is the correct derivative to take in the divergence theorem?2 How do we
know that the flux integral across a surface is the correct kind of double integral to use in these
theorems?

2 Manifolds

First, we need to say a little bit about the common generalization of a point, curve, or surface
in R3: this is called a manifold.

2.1 Defining manifolds

If you are the sort of person who is happy with intuitive geometric feelings, you might be happy
just saying that a curve is a 1-dimensional object, and a surface is a 2-dimensional object. If you
prefer rigorous definitions, you might have the question: what makes a manifold k-dimensional?
There are two answers:

• On a theoretical level that we cannot make rigorous in this course, the answer is that a k-
dimensional manifold is something that “locally looks like a piece of Rk”. For example, a
surface is 2-dimensional, because locally it looks like a piece of the plane.

• On a practical level that is useful for our purposes, the answer is that a k-dimensional manifold
is something that can be given a k-dimensional parameterization: it is a mostly-injective image
of a function r(u1, u2, . . . , uk), where ui ranges over an interval [ai, bi] for every i.

In our case, a 1-dimensional manifold in R3 is a curve: something with a parameterization r(t),
where t ∈ [a, b]. A 2-dimensional manifold in R3 is a surface: something with a parameteriza-
tion r(u, v), where (u, v) ∈ [a, b]× [c, d]. A 3-dimensional manifold in R3: is a solid region: usually,
we describe these just in terms of x, y, and z (three variables!) but in principle, we could use a
uvw-substitution to describe them, which is like using a 3-variable parameterization r(u, v, w). A
0-dimensional manifold is a point: it takes no variables to describe.

We are also happy thinking about k-dimensional manifolds that have several pieces, each with its
own k-dimensional parameterization.

2.2 Oriented manifolds

All of these objects can be oriented, which means different things depending on context. For a
curve, orientation means giving it a starting point and an ending point, or a direction of travel along
the curve. For a surface, orientation means labeling one of the two sides of the curve as an “inside”

2Well, the fact that it’s called the “divergence theorem” may be a subtle hint in that direction, but if we had
never seen that theorem before, presumably we wouldn’t know what it’s called, either.
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and an “outside”. The extreme cases—orientations of points and solid regions—are a bit silly in R3,
and we can just think of those cases as having a “positive” or “negative” orientation.

Importantly, all of these orientations (except maybe the point) can be inferred from the parame-
terization we gave our manifold:

• For a curve, our parameterization r(t) has a derivative dr
dt . This gives a tangent vector to the

curve at the point r(t), which tells us a direction of travel along the curve.

• For a surface, our parameterization r(u, v) has two partial derivatives ∂r
∂u and ∂r

∂v . Their cross
product gives a normal vector to the curve at the point r(u, v), which we interpret as pointing
from “inside” to “outside”.

• For a solid region, if we have a uvw-substitution and interpret it as a 3-variable parameteri-
zation r(u, v, w), then we can compute the Jacobian determinant ∂(x,y,z)

∂(u,v,w) of that substitution;
the sign of the Jacobian determinant tells us if the orientation is positive or negative.

It looks like we need specialized knowledge related to curves and surfaces to interpret how, exactly,
the parameterization gives us an orientation. This is not exactly true: we only need this specialized
knowledge if we want to put the orientation in a human-legible form. In the abstract context
of considering k-dimensional manifolds in Rn, it is enough to know that there’s some notion of
orientation that’s encoded in the parameterization.

2.3 Boundaries of manifolds

For k ≥ 1, a k-dimensional manifold has a boundary, which is a (k− 1)-dimensional manifold. The
boundary of a curve in R3 consists of the endpoints of that curve. The boundary of a surface in R3

is the curve that goes around the edge of the surface. The boundary of a solid region in R3 is the
surface enclosing that region.

It is possible for the boundary to be empty: for example, a curve could be a closed curve. We
think of it as starting where it ends, and we give it a parameterization r(t) with t ∈ [a, b] such that
r(a) = r(b); however, that doesn’t mean that we think of r(a) as a boundary point of the curve!
Geometrically, it’s just a point on the curve like any other.

The boundary of an oriented manifold is also oriented; moreover, there’s a notion of compatibility
between the orientation of a manifold and the orientation of its boundary. For example, if a curve
starts at r(a) and ends at r(b), the compatible orientation of these points makes r(b) a “positive”
point and r(a) a “negative” point. For a positively oriented solid region, the compatible orientation
of its boundary is the outward orientation.

In the case of surfaces and their boundaries, we had a completely algebraic way of finding boundaries
based on the parameterization: see Lecture 23. This is conceptually important, because that
method gave us oriented boundaries, and so it gave us an algebraic interpretation of what it means
for boundaries to be compatibly oriented. The method we used in Lecture 23 for surfaces generalizes
to arbitrary dimensions (of both manifolds and the spaces they live in).

In this lecture, we wil introduce some new notation: we will write ∂M for the boundary of the
manifold M .
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3 Differential forms

Differential forms are what we need to talk about integration over manifolds. The machinery
they bring in is admittedly more complicated than what we need to understand vector integrals.
However, there are no arbitrary secrets specific to a particular situation to learn about differential
forms, and it is possible to state a single theorem that unites all three of the theorems we began
this lecture with.

3.1 Building differential forms

The fundamental building blocks of differential forms on R3 are the coordinate differentials dx, dy,
and dz. (Working in full generality over Rn, we would have n different coordinate differentials
dx1,dx2, . . . ,dxn.) They are combined using the “exterior” or “wedge” product written using the
symbol ∧. A single differential dx, dy, or dz intuitively represents an infinitesimal oriented length; a
wedge product like dx∧dy, dy∧dz, or dz∧dx intuitively represents an infinitesimal oriented area; a
triple wedge product like dx∧dy∧dz intuitively represents an infinitesimal oriented volume.

All of these can be multiplied by arbitrary scalar functions and added together. However, we prefer
not to combine terms with a different number of differentials; it is generally not useful to consider a
sum like x2 dy−dx∧dz. We say that a differential k-form is one which only includes k-fold wedge
products of the coordinate differentials. For example, a generic differential 1-form is something that
can be written as

M dx+N dy + P dz

for some scalar functions M , N , and P .

We can define the wedge product of any two differential forms. The wedge product is associa-
tive, distributes over addition, and commutes with scalar multiplication. When simplifying wedge
products of differentials, we obey two rules:

1. For any two variables u and v, du ∧ dv = −(dv ∧ du).

2. For any variable u, du ∧ du = 0.

This wedge product is actually a common generalization of several useful vector operations. For
example, the wedge product of a 1-form and a 2-form

(M dx+N dy + P dz) ∧ (U dy ∧ dz + V dz ∧ dx+W dx ∧ dy)

will simplify to the 3-form (MU +NV + PW ) dx ∧ dy ∧ dz, so it is analogous to the dot product
of vectors M i + N j + P k and U i + V j +W k. The wedge product of two 1-forms will simplify
to a 2-form, and it corresponds to the cross product of two vectors. The wedge product of three
1-forms will simplify to a 3-form, and it corresponds to the determinant of a 3× 3 matrix.

(All of these examples are specific to differential forms on R3, but that doesn’t mean that the wedge
product doesn’t do anything interesting on Rn for other values of n—it just has other, less familiar
meanings in those cases.)
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3.2 Exterior derivatives

There is another abstract operation we can define on differential forms: the exterior derivative.
This is an operation d that turns 0-forms (or functions) into 1-forms, 1-forms into 2-forms, and so
forth.

The rule is:

• For a 0-form f in R3, its exterior derivative df is defined by df = ∂f
∂x dx + ∂f

∂y dy + ∂f
∂z dz.

This generalizes to n dimensions if you like: the formula becomes df = ∂f
∂x1

dx1 +
∂f
∂x2

dx2 +

· · ·+ ∂f
∂xn

dxn.

• To take the exterior derivative of a k-form with k ≥ 1, we apply the rule above to every scalar
function that appears in the k-form; multiplication by that scalar function becomes a wedge
product with its exterior derivative. For example,

d(M dx+N dy + P dz) = dM ∧ dx+ dN ∧ dy + dP ∧ dz

is the rule for the exterior derivative of a 1-form in R3.

We simplify this expression using the already-mentioned rules for simplifying wedge products.

In R3, the exterior derivative is the common generalization of gradient, curl, and divergence. For a
0-form f , its exterior derivative df (shown above) corresponds to the gradient of f . For a 1-form
M dx+N dy + P dz, its exterior derivative will end up simplifying to

d(M dx+N dy + P dz) =

(
∂P

∂y
− ∂N

∂z

)
dy ∧ dz +

(
∂M

∂z
− ∂P

∂x

)
dz ∧ dx+

(
∂N

∂x
− ∂M

∂y

)
dx ∧ dy

which corresponds to the curl of F = M i+N j+P k. For a 2-form U dy∧dz+V dz∧dx+W dx∧dy,
its exterior derivative will end up simplifying to

(
∂U
∂x + ∂V

∂y + ∂W
∂z

)
dx∧ dy ∧ dz, which corresponds

to the divergence of G = U i+ V j+W k.

An important property of the exterior derivative, which we proved in an earlier lecture, is that for
any differential form ω, d(dω) = 0. We have the diagram

0-forms
d−→ 1-forms

d−→ 2-forms
d−→ 3-forms

and if we start anywhere, and apply the arrow twice, we get 0. In fancy algebraic terminology, this
makes the diagram a “chain complex”.

3.3 Integrating differential forms

Messing around with differential forms is useless until we can relate them to something we already
understand—and statements like “dx intuitively represents an infinitesimal oriented length” don’t
mean anything until we give a way to interpret dx non-intuitively.

In fact, the proper way to understand what differential forms are is this: a differential k-form
represents something we can integrate over a k-dimensional oriented manifold.

If you have a differential k-form, and a k-dimensional manifold, then you can express our coordinate
differentials in terms of coordinates on the manifold : differentials of the parameterization variables!
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Once we’ve done that, our integral of the differential form over the manifold turns into a standard
k-fold iterated integral with respect to the variables of the parameterization.

For example, if you have a curve in R3 described by a parameterization r(t) and a differential form
ω = M dx+N dy+N dt, you can use the exterior derivative to express dx, dy, and dz all in terms
of dt (which will involve differentiating the components of r(t) = (x(t), y(t), z(t))). This puts ω
into the form f(t) dt for some function f(t). Now, integrating ω is as simple as integrating f(t)
with respect to t. The bounds on t are whatever they were in the parameterization r(t).

In R3, this description will tell us that the integral of a 1-form is a line integral of the corresponding
vector field, and the integral of a 2-form is a flux integral of the corresponding vector field—without
knowing in advance that there’s anything special about line integrals and flux integrals.

4 The generalized Stokes’ theorem

We now have all the vocabulary we need to state a single theorem uniting all of our theorems. This
theorem is called the generalized Stokes’ theorem. It says:

Theorem 4.1. Let M be a (k + 1)-dimensional oriented manifold in Rn (where 0 ≤ k ≤ n − 1),
and let ω be a differential k-form defined on M . Then∫

M
dω =

∫
∂M

ω.

(Here, as mentioned earlier, ∂M denotes the boundary of M ; it must be oriented compatibly with
the orientation of M .)

We will not prove this theorem, but the proof of the divergence theorem in the previous lecture
captures the spirit of what’s necessary to prove it. The rest is just mastering the notation of
differential forms.

One thing worth noting is that we said “let ω be a differential k-form defined on M”. This is
somewhat more general than the way we’ve been using theorems like this in practice; we’ve written
our integrands in terms of x, y, and z, which meant that our differential forms were defined on all
of R3.

However, earlier in this lecture, when we defined the integral of ω on M , our first step was using
the parameterization of M to write ω in terms of the parameterization variables. In principle, we
could skip that step and just express ω in terms of those variables to begin with—then, we don’t
need ω to be defined anywhere outside M in the first place.

More commonly, we take advantage of this “defined on M” clause to apply the theorem to dif-
ferential forms that have poles of some kind—as long as those poles are not contained in M . For
example, if we divide by x2 + y2 + z2 in the definition of ω, that’s fine—as long as M does not
contain the point (0, 0, 0).

One of the theorems at the beginning of these notes seems particularly unlike the the generalized
Stokes’ theorem. The fundamental theorem of line integrals doesn’t even have integrals on both
sides! What’s up with that?
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To make sense of this, we must define what it means to integrate over a point. A point is a
0-dimensional manifold. A 0-form (the thing we can integrate over a 0-dimensional manifold)
is a function. What is the only thing we can do with a function and a point? Evaluate that
function at that point! So the integral of a function f : Rn → R over a point p ∈ Rn is simply the
value f(p).

An oriented point is just a point that can be either positive or negative. The integral of f over
a positive point p is f(p), and the integral of f over a negative point p is −f(p). How does this
come up? Well, if we have a curve C that starts at point a and ends at point b, its compatibly-
oriented boundary consists of the positively-oriented point b and the negatively-orientedpoint a, so
the integral of f over its boundary is precisely f(b)− f(a).

4.1 Boundary of a boundary

There is a neat geometrical consequence of the generalized Stokes’ theorem. Let ω be a k-form
and let M be a (k + 2)-dimensional oriented manifold. Then by applying the generalized Stokes’
theorem twice, we get ∫

M
d(dω) =

∫
∂M

dω =

∫
∂(∂M)

ω

where ∂(∂M) denotes the boundary of the boundary of M . The first integral here is always
0, because d(dω) = 0 for any differential form ω. Therefore the other two integrals are also
0. In particular, the third integral (which is a integral of an arbitrary k-form over ∂(∂M)) is
always 0.

How can this be? If ∂(∂M) were any nontrivial manifold, then surely there would be some k-forms
that gave us a nonzero integral. The only possibility is that ∂(∂M) is guaranteed to be empty: the
boundary of a manifold has no boundary of its own.

5 Scalar integrals

A scalar integral is an integral of a scalar function f : Rn → R over a manifold M that does not
care about the orientation of M . These have not been the focus of our attention for a few lectures,
but we would also like to understand them in general.

The general approach here3 is an extension of the Jacobian determinant. Suppose that Rn has
variables x1, x2, . . . , xn, and that M is a k-dimensional manifold on which these are parameterized
by u1, u2, . . . , uk. We define the matrix J to be the matrix of partial derivatives

J =



∂x1
∂u1

∂x1
∂u2

· · · ∂x1
∂uk

∂x2
∂u1

∂x2
∂u2

· · · ∂x2
∂uk

∂x3
∂u1

∂x3
∂u2

· · · ∂x3
∂uk

...
...

. . .
...

∂xn
∂u1

∂xn
∂u2

· · · ∂xn
∂uk


.

3Which I got a nicer explanation of by asking a question on Math StackExchange: https://math.stackexchange.
com/questions/4819542/scalar-integrals-in-higher-dimensions.
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What have we already done with this matrix?

• When performing a uv-substitution in R2 or a uvw-substitution in R3, we use the Jacobian
determinant det(J) as a scaling factor. In oriented integrals, we left it as it is; for scalar
integrals, we multiply by |det(J)|, its absolute value.

(This cannot be the general rule for scalar integrals of all dimensions, by the way: when the
manifold M has lower dimension than Rn, J is not a square matrix, and has no determinant.)

• When we give a curve C in Rn a parameterization r(t), the matrix J is just a column vector:
the vector dr

dt . In a scalar integral over C, we multiply by
∥∥dr
dt

∥∥: the sum of squares of the
entries of J .

• The factor
∥∥ ∂r
∂u × ∂r

∂v

∥∥ for scalar surface integrals also seems to involve the matrix J somehow,
but it might not be immediately obvious how to write that relationship down in a formula.

5.1 The Gram determinant

The common generalization of all of these is the following rule. When integrating over any k-
dimensional object in any number of dimensions, our “k-dimensional volume element” (which is
written ds, or dA, or dV in the special cases we’ve seen) can be expressed in terms of our parameters
u1, . . . , uk as √

det(JTJ) du1 du2 . . . duk.

Here, JT is the transpose of the matrix J ; we take the matrix product of the k× n matrix JT and
the n× k matrix J to get a k × k result, and then we take its determinant. (That determinant is
guaranteed to be positive, so we can always take its square root.)

If you want some terminology: the matrix JTJ is called the Gram matrix of the columns of J ,
and its determinant is called the Gram determinant. It is a more general concept than what
we’re using here. In general,

√
det(JTJ) computes the k-dimensional volume of the parallelepiped4

whose sides are parallel and congruent to the columns of J . In our case, the way we’ve defined J ,
the columns of J are the partial derivatives ∂r

∂u1
through ∂r

∂uk
.

The Gram matrix JTJ can also be defined in a different, equivalent way: its (i, j) entry is the dot
product of the ith column of J and the jth column.

Now, if we ever need to, we could integrate a function over a 5-dimensional manifold in 17-
dimensional space. (It won’t be fun, but we know how to do all of the steps!)

Let’s compare the Gram determinant approach to several situations in R3:

• If k = 1, the manifold M is a curve with parameterization r(t), and J has a single column
vector dr

dt . Computing JTJ means taking the dot product of dr
dt with itself, which is exactly

the same as adding up the squares of its entries.

• If k = 2, then the
√

det(JTJ) formula is equivalent to the
∥∥ ∂r
∂u × ∂r

∂v

∥∥ after simplification, but

this is not obvious. As we’ll see in an example, the
√
det(JTJ) formula can sometimes be

easier to use!

4A hard-to-spell word that generalizes “parallelogram” to more than 2 dimensions.
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• If k = 3, then J is a square matrix, and has a determinant; we can write√
det(JTJ) =

√
det(JT) · det(J) =

√
det(J)2 = |det(J)|.

The formula via Gram determinant is a bit more unwieldy than just using |det(J)|, but that’s
the price we pay for generality.

5.2 An example

Out of an excess of bravery, let’s try to compute
√
det(JTJ) for the spherical parameterization

r(θ, ϕ) = (cos θ sinϕ, sin θ sinϕ, cosϕ). We’ll take the dot-product interpretation of JTJ :

JTJ =

 ∂r
∂θ ·

∂r
∂θ

∂r
∂θ ·

∂r
∂ϕ

∂r
∂ϕ · ∂r

∂θ
∂r
∂ϕ · ∂r

∂ϕ


where ∂r

∂θ = − sin θ sinϕ i+ cos θ sinϕ j and ∂r
∂ϕ = cos θ cosϕ i+ sin θ cosϕ j− sinϕk.

The (1, 1) entry is
∂r

∂θ
· ∂r
∂θ

= sin2 θ sin2 ϕ+ cos2 θ sin2 ϕ,

which we simplify to sin2 ϕ by factoring out sin2 θ + cos2 θ = 1. The (1, 2) and (2, 1) entries are
both equal to

∂r

∂θ
· ∂r
∂ϕ

= cos θ cosϕ(− sin θ sinϕ) + sin θ cosϕ cos θ sinϕ+ 0

whih simplifies to 0. Finally, the (2, 2) entry is

∂r

∂ϕ
· ∂r
∂ϕ

= cos2 θ cos2 ϕ+ sin2 θ cos2 ϕ+ sin2 ϕ

which simplifies twice: the first two terms combine into cos2 ϕ, and then this combines with the
last term to just get 1. Therefore

JTJ =

[
sin2 ϕ 0
0 1

]
.

I feel like this is much less painful than the method using cross products! It reveals a big part of
the reason for the simplification: the two partial derivatives are orthogonal to each other, which is
why we like this parameterization to begin with.

For surface integrals with this parameterization, we will use
√
det(JTJ) =

√
sin2 ϕ = |sinϕ|.

Usually, the domain of ϕ is [0, π], in which case, we can just write sinϕ: it’s always positive.
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