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Lecture 3: Substitution with two variables

August 21, 2023 Kennesaw State University

1 A motivational example

Suppose we want to know the area of the ellipse defined by x2 − 2xy + 5y2 ≤ 1. We could set this
up as a rather horrific integral: ∫ √

5/2

x=−
√
5/2

∫ (x+
√
5−4x2)/5

y=(x−
√
5−4x2)/5

dy dx.

This integral is defined by a Riemann sum. The idea behind that Riemann sum is that we ap-
proximate the ellipse by a number of ∆y ×∆x squares (as in Figure 1a), multiply the number of
squares it takes by the area of each square, and then take the limit as ∆x and ∆y both go to 0. (If
they’re squares, then really, ∆x and ∆y are the same quantity, but it’s convenient to allow them
to be different.)

We can make the ellipse look much nicer with a substitution: x2 − 2xy + 5y2 can be rewritten as
(x− y)2 + (2y)2, so by setting u = x− y and v = 2y, we can obtain the equation u2 + v2 ≤ 1. How
do we use this to help us find the area?
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(a) The ellipse x2−2xy+5y2 ≤ 1
approximated by square cells

x

y

(b) The same ellipse approxi-
mated by parallelogram cells

u

v

(c) The same diagram in the uv-
plane rather than the xy-plane

Figure 1: Approximating the area of an ellipse (∆x = ∆y = ∆u = ∆v = 1
4 in all examples)

One way to visualize what’s going on is by drawing a skew lattice on our ellipse. Rather than
drawing lines for many x-values and many y-values, we draw lines for many u-values (which are ∆u
apart) and many v-values (which are ∆v apart). This divides our ellipse into many parallelograms
(as in Figure 1b). To find the area, we can count the number of parallelograms, multiply by the
area of each parallelogram, and then take the limit as ∆u and ∆v both go to 0.

1This document comes from the Math 3204 course webpage: http://facultyweb.kennesaw.edu/mlavrov/

courses/3204-fall-2023.php
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Another way to visualize u and v is to draw a diagram in the uv-plane rather than the xy-plane
(as in Figure 1c). Here, the shape of u2 + v2 ≤ 1 is much nicer: it’s a circle of radius 1. The area
is still given by a limit as ∆u and ∆v go to 0 of the number of ∆u×∆v squares times the area of
each square. However, we know the area in the uv-plane directly: it’s just π, the area of a circle of
radius 1.

We can also relate the approximations we see to each other. The number of small cells (call it N)
is exactly the same in both diagrams, because the ellipse and the circle are divided up in exactly
the same way. The area of the ellipse is approximately N times the area of a parallelogram. The
area of the circle is approximately N times the area of a square. So the ratio in areas between the
ellipse and the circle is exactly the same as the ratio in areas between the parallelogram and the
square.

At this point, I am going to invoke a fact from linear algebra, without proof (because it will take
us too far off track). Let f(u, v) = (u + 1

2v,
1
2v) be the linear transformation that turns our (u, v)

coordinates back into (x, y) coordinates. (In other words, f is the inverse of the transformation
that turns (x, y) into u = x− y and v = 2y.) Then:

Claim 1.1. A linear transformation f : R2 → R2 scales all areas by the absolute value of the
determinant of the matrix representing f .

In this particular case,

f(u, v) =

[
1 1/2
0 1/2

]
, and det

[
1 1/2
0 1/2

]
= 1 · 1

2
− 1

2
· 0 =

1

2
.

So the area of each parallelogram in the xy-plane is 1
2 the area of each square in the uv-plane, and

the area of the ellipse is π
2 : half the area of the circle.2

We will take Claim 1.1 as given for today. The only thing we need to know about determinants for
now is the rule for the determinant of a 2× 2 matrix:

det

[
a b
c d

]
= ad− bc.

2 The Jacobian determinant

The idea we used in the example in the previous section can be applied to any change of variables
(x, y) ⇝ (u, v), turning an integral dx dy into an integral dudv. There are only two changes that
happen when we generalize:

• First of all, in a general Riemann sum, we multiply the area of each small cell by the function
we’re integrating, evaluated at a point in that cell.

This just means that in general, our new integral should also have a corresponding expression
inside it, just written in terms of u and v rather than x and y.

• Second, most changes of variables are not linear. For a nonlinear change of variables, the
ratio of areas between the small cells will vary over our region.

2In this example, we could have used Claim 1.1 directly, without dividing the regions up into cells, but the division
into cells will be important later.
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To deal with the second bullet point, we need derivatives. Suppose we have a transformation
f(u, v) = (x(u, v), y(u, v)) which gives the (x, y) point corresponding to (u, v). Then a linear
approximation to f near a point (u0, v0) is

f(u, v) ≈ f(u0, v0) +

(
∂x

∂u
(u0, v0),

∂y

∂u
(u0, v0)

)
(u− u0) +

(
∂x

∂v
(u0, v0),

∂y

∂v
(u0, v0)

)
(v − v0).

(As a reminder, an expression like ∂x
∂u is a partial derivative: we take the derivative of x(u, v)

with respect to u, treating v as a constant.)

By Claim 1.1, the area of a cell in the xy-plane near f(u0, v0) is approximately the are of a cell in
the uv-plane near (u0, v0), multiplied by ∣∣∣∣∣det

[
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]∣∣∣∣∣ .
This matrix of partial derivatives is called the Jacobian matrix, and its determinant is called the
Jacobian determinant. We write it so often that we will give it special notation: ∂(x,y)

∂(u,v) . (Note:
other sources use this notation for the matrix itself, not just its determinant, but we will only ever
need the determinant of the matrix.)

Let’s see how this works on another example. Suppose we are working with the integral

I :=

∫ 2

x=1

∫ 2/x

y=1/x

√
x+ 1

y
dy dx.

To make the
√
x+ 1 easier to integrate, we substitute u = x + 1; to make the bounds 1

x ≤ y ≤ 2
x

(or equivalently 1 ≤ xy ≤ 2) simpler, we substitute v = xy.

To find ∂(x,y)
∂(u,v) , we must first find x and y in terms of u and v. From u = x+ 1, we have x = u− 1,

so v = (u− 1)y, and therefore y = v
u−1 . This yields

∂(x, y)

∂(u, v)
= det

[
1 0

− v
(u−1)2

1
u−1

]
=

1

u− 1
.

Now onto the bounds. If 1 ≤ x ≤ 2, then 1 ≤ u − 1 ≤ 2, so 2 ≤ u ≤ 3. If 1
x ≤ y ≤ 2x, then

1 ≤ xy ≤ 2, so 1 ≤ v ≤ 2. Finally, we replace x and y by u − 1 and (u − 1)y inside the integral.
We get

I =

∫ 3

u=2

∫ 2

v=1

√
u

v/(u− 1)
· 1

u− 1
dv du =

∫ 3

u=2

∫ 2

v=1

√
u

v
dv du.

(In general, 1
u+1 would need to be | 1

u+1 |, but when 2 ≤ u ≤ 3, 1
u+1 is already always positive.)

We can factor this double integral into two single integrals:

I =

(∫ 3

u=2

√
udu

)(∫ 2

v=1

dv

v

)
.

From here, simplifying I to 2
3(3

3/2 − 23/2) ln 2 is just single-variable calculus.
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Before we go on to the final topic, here is a word of caution: these 2-variable substitutions only work
if f(u, v) = (x(u, v), y(u, v)) is a bijection between the region in the uv-plane and the region in the
xy-plane. If parts of the uv-region “fold over” onto each other in the xy-region, then some parts of
the original integral will end up overweighted in the integral we write after the substitution.

3 Oriented double integrals

It is said: “Only a Sith deals in absolutes.” The meaning of this proverb is that in mathematics,
whenever you encounter an expression inside an absolute value, you should ask whether it has
meaning without that absolute value as well. What if we replaced the rule

dy dx =

∣∣∣∣∂(x, y)∂(u, v)

∣∣∣∣ du dv
by a rule that did not take the absolute value of ∂(x,y)

∂(u,v)?

This would be a weird rule that sometimes made even our areas negative, so we definitely wouldn’t
want to use it all the time. However, there is a meaning attached to the negative signs. If the
determinant of a linear transformation f : R2 → R2 is negative, that means f is orientation-reversing:
it turns shapes into their mirror images!

One way to track this is to compare how the axes are oriented. The way we draw the xy-plane,
the positive y-axis is counterclockwise from the positive x-axis. So we say that a substitution is
orientation-preserving at a point if the direction of increasing v is clockwise from the direction
increasing u, rather than counterclockwise. Otherwise, it is orientation-reversing.

x

y

u

v

(a) The orientation of our first substitution

x

y

u

v

(b) The orientation of our second substitution

Figure 2: Geometrically, we can see that both of our uv-substitutions are orientation-preserving

A better way to say this is that an oriented region in R2 is a region which has a notion of
“clockwise” and “counterclockwise” at each point. A region R whose notion of “clockwise” and
“counterclockwise” matches the way we normally draw R2 is positively oriented. It has an evil
twin: a region R′ which is identical as a set, but has the reverse orientation at each point.

When we write oriented integrals, we will use slightly different notation to emphasize this: rather
than writing “dx dy” at the end, we will write “dx∧dy”. The ∧ (wedge) symbol has other meanings
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we will not discuss now. For now, all we need to know is that∫∫
R
g(x, y) dx ∧ dy

is an oriented integral which is equal to the ordinary integral of g(x, y) over R when R is positively
oriented, and to the negative of that integral when R is negatively oriented.

Suppose that our substitution (x(u, v), y(u, v)) is a bijection between a region S in the uv-plane and

a region R in the xy-plane, as sets. Then, depending on the sign of ∂(x,y)
∂(u,v) , the substitution could

either be a bijection from S to R, or from S to R′, as oriented regions. If ∂(x,y)
∂(u,v) < 0, then clockwise

movement in S will correspond to counterclockwise movement in R, so S really corresponds to R′,
not to R. As a result, with oriented integrals, we have a simpler substitution rule:∫∫

R
g(x, y) dx ∧ dy =

∫∫
S
g(x(u, v), y(u, v))

∂(x, y)

∂(u, v)
du ∧ dv.

The sign change potentially introduced by ∂(x,y)
∂(u,v) will exactly match the sign change potentially

introduced by R and S having opposite orientations.

Is this useful? Maybe not so much, right now. It’s a way to dip our toes into the world of integrals
that come with orientations; we’ll see more use out of that world later.

4 Wedge products

These oriented integrals come with a bonus feature: a different, equivalent way to compute the
factor in the substitution rule! Here is how it is done:

1. In the differential dx ∧ dy, replace dx by ∂x
∂u du + ∂x

∂v dv and dy by ∂y
∂u du + ∂y

∂v dv: this is
another form of the multivariate chain rule.

2. Distribute ∧ over addition and pull out non-differential factors, so that you get an expression
in terms of du ∧ du, du ∧ dv, dv ∧ du, and dv ∧ dv.

3. Simplify these with two rules. First, dv ∧ du = −(du ∧ dv): this makes sense, since these
coordinate systems have opposite orientations. Second, du∧du = dv∧dv = 0: a “coordinate
system” with the same variable repeated twice cannot measure any nonzero area.

Let’s see this on two examples. First, our transformation of the ellipse, with x = u+ 1
2v and y = 1

2v.
Here,

dx ∧ dy = (du+ 1
2 dv) ∧ (12 dv) =

1
2 du ∧ dv + 1

4 dv ∧ dv = 1
2 du ∧ dv.

Next, let’s return to our previous substitution example, with x = u−1 and y = v
u−1 . Here, dx = du

and dy = − v
(u−1)2

du+ 1
u−1 dv, so dx ∧ dy becomes

du ∧
(
− v

(u− 1)2
du+

1

u− 1
dv

)
= − v

(u− 1)2
du ∧ du+

1

u− 1
du ∧ dv =

1

u− 1
du ∧ dv.

You should feel free to use either method—the Jacobian determinant, or the wedge product—to
perform substitutions. They will give the same answer, as long as you remember that for a non-
oriented integral, you need to take the absolute value of the scaling factor on the differential!
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