
Math 3204: Calculus IV1 Mikhail Lavrov

Lecture 4: Substitution with three variables

August 23, 2023 Kennesaw State University

1 The 3-variable Jacobian

In earlier courses, you learned about u-substitutions, which replace x with another variable u. In
the previous lecture, you learned about uv-substitutions, which replace two variables (x, y) with
variables (u, v). Finally, today we will learn about uvw-substitutions, which replace three variables
(x, y, z) with variables (u, v, w).

For the same reasons that it was true in two dimensions, every uvw-substitution also comes with
a scaling factor we will write as ∂(x,y,z)

∂(u,v,w) , usually with an absolute value on it. But what is that
factor?

One way to arrive at it is to use the same algebra of wedge products that we used in two variables.
We begin by using the chain rule to write dx as ∂x

∂u du+ ∂x
∂v dv +

∂x
∂w dw, and the same for y and z.

Then, we simplify dx ∧ dy ∧ dz by three rules:

• We distribute ∧ over addition, and factor out identical differential terms.

• We can swap two differentials if we flip the sign, such as dv ∧ du = −(du ∧ dv).

• A wedge product like du ∧ du, which multiplies a differential with itself, is 0.

If we simplify (adu + bdv) ∧ (cdu + ddv), we get (ad − bc) du ∧ dv, which motivates the 2 × 2
determinant. If we simplify

(adu+ bdv + c dw) ∧ (ddu+ edv + f dw) ∧ (g du+ hdv + idw)

then we first get(
(ae− bd) du ∧ dv + (bf − ce) dv ∧ dw + (cd− af) dw ∧ du

)
∧ (g du+ hdv + i dw)

and then finally (aei + bfg + cdh − afh − bdi − ceg) du ∧ dv ∧ dw. The factor in front is exactly
the determinant of a 3× 3 matrix:

det

a b c
d e f
g h i

 = aei+ bfg + cdh− afh− bdi− ceg.

Instead of arbitrary numbers a, b, c, d, e, f, g, h, i, our matrix will have the partial derivatives ∂x
∂u

through ∂z
∂w in it. We define the 3-variable Jacobian determinant ∂(x,y,z)

∂(u,v,w) to be

∂(x, y, z)

∂(u, v, w)
= det


∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

 .

1This document comes from the Math 3204 course webpage: http://facultyweb.kennesaw.edu/mlavrov/

courses/3204-fall-2023.php
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The non-oriented rule for substitution says the following. Let f : R3 → R3, with f(u, v, w) =
(x(u, v, w), y(u, v, w), z(u, v, w)), be a bijection from a region S in uvw-space to a region R in
xyz-space. Then for a function g : R3 → R,∫∫∫

R
g(x, y, z) dx dy dz =

∫∫∫
S
g(f(u, v, w))

∣∣∣∣ ∂(x, y, z)∂(u, v, w)

∣∣∣∣ dudv dw.
Again, there’s an absolute value. Again, to drop the absolute value, we need to pass to oriented
regions. Again, we mostly don’t need to worry about oriented regions for now—and in fact, we
will not need to have much intuition for oriented 3-dimensional regions at all, this semester. (Our
notion of orientation for 2-dimensional regions will give us a notion of orientation for 2-dimensional
surfaces in R3. Similarly, orientations of 3-dimensional regions would be useful if we were later
going to think about 3-dimensional hypersurfaces in R4, which we won’t.)

However, you might be curious: what is the analogue of “clockwise” and “counterclockwise” for
3-dimensional orientations? It is the “right-hand rule” you may have learned for cross products.
Standard rectangular coordinates on R3 follow the right-hand rule, because the cross product i× j
of the basis vectors i = (1, 0, 0) and j = (0, 1, 0) is the basis vector k = (0, 0, 1). A mirror image of
R3 would follow a “left-hand rule” where j× i = k; it would have the opposite orientation.

2 Computing 3× 3 determinants

There is a mnemonic called the rule of Sarrus for the determinant of a 3×3 matrix. First, extend
the matrix to a 3×5 grid by repeating the first and second columns. Then, add the products of the
three top-left-to-bottom-right diagonals (Figure 1, in red) and subtract the products of the three
bottom-left-to-top-right diagonals (Figure 1, in blue).

+a11a22a33
+a12a23a31

+a13a21a32

−a13a22a31

−a11a23a32

−a12a21a33

a11 a12 a13 a11 a12

a21 a22 a23 a21 a22

a31 a32 a33 a31 a32

Figure 1: An illustration of the rule of Sarrus

This rule is a bad rule to learn if you’re doing linear algebra, because it doesn’t generalize to n×n
determinants. However, we will not go higher than 3× 3 in this class, so it’s perfect for us.
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There are also two special cases that we’ll commonly encounter. First: if a matrix is upper triangular
or lower triangular, its determinant is just the product of the entries on the main diagonal:

det

a11 a12 a13
0 a22 a23
0 0 a33

 = det

a11 0 0
a21 a22 0
a31 a32 a33

 = a11a22a33.

A special case of this is a diagonal matrix, where only a11, a22, a33 are nonzero. This occurs when
our uvw-substitution replaces x by a function only of u, y by a function only of v, and z by a
function only of w.

Second, we often encounter uvw-substitutions which split up into two parts: say, x, y are replaced
by functions of u, v, and z is replaced by a function of w. This gives us a Jacobian matrix with a
block structure: we have a 2×2 matrix and a 1×1 matrix “joined diagonally”, with 0’s connecting
them. In this case, the determinant is the product of the 2 × 2 determinant and the 1 × 1 entry
remaining:

det

a11 a12 0
a21 a22 0
0 0 a33

 = (a11a22 − a12a21)a33.

3 A typical example

Here is a triple integral we might want to do by substitution:∫ 1

x=−1

∫ 5−x

y=4−x

∫ 2y+1

z=2y−1
x2 + xy dz dy dx.

How should we substitute? Well, x seems totally fine as a variable, so let’s keep u = x. The bounds
on y are 4− x ≤ y ≤ 5− x, or 4 ≤ x+ y ≤ 5, so we might want to set v = x+ y to get 4 ≤ v ≤ 5.
Finally, the bounds on z are 2y − 1 ≤ z ≤ 2y + 1, or −1 ≤ z − 2y ≤ 1, so we might want to set
w = z − 2y to get −1 ≤ w ≤ 1.

To find the Jacobian determinant, we first want to solve for x, y, z in terms of u, v, w. From the first
equation, x = u. From the second equation, y = v − x = v − u. Finally, from the third equation,
z = w + 2y = w + 2(v − u). We have

∂(x, y, z)

∂(u, v, w)
= det


∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

 = det


1 0 0

−1 1 0

−2 2 1

 = 1.

(This determinant is particularly easy to evaluate, because the matrix is lower-triangular!)

Since the Jacobian determinant is 1, we do not need to add any extra factors when substituting.
Our last step is to rewrite x2+xy as u2+u(v−u) = uv; then we can express our integral as∫ 1

u=−1

∫ 5

v=4

∫ 1

w=−1
uv dw dv du.
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While we’re at it, here is another trick to keep in mind, because it will make many of our integrals
easier. The integrand uv is an odd function of u: when you replace u by −u, it switches sign. (It’s
also an odd function of v, though that’s not relevant here.) Also, our region, which is a cuboid
[−1, 1] × [4, 5] × [−1, 1], is symmetric about the vw-plane: it is unchanged when you replace u
by −u.

When we integrate an odd function of u over such a region, the negative values of u will exactly
cancel out with the positive values of u, and we’ll get 0. Therefore, even though we could do this
integral the long way, we don’t have to; we know that we’ll get 0 at the end.

4 Cylindrical and spherical coordinates

With the power of the three-variable Jacobian, we can re-derive our rules for integration in cylin-
drical and spherical coordinates from first principles.

4.1 Cylindrical coordinates

The substitution for cylindrical coordinates is x = r cos θ, y = r sin θ, z = z. Here, our variables
r, θ, z play the role of u, v, w in a uvw-substitution: after all, u, v, and w are just names!

The Jacobian determinant of this substitution is

∂(x, y, z)

∂(r, θ, z)
= det


∂x
∂r

∂x
∂θ

∂x
∂z

∂y
∂r

∂y
∂θ

∂y
∂z

∂z
∂r

∂z
∂θ

∂z
∂z

 = det


cos θ −r sin θ 0

sin θ r cos θ 0

0 0 1

 .

This is one of those cases where our matrix has a 2 × 2 block and a 1 × 1 block. So we take the
2 × 2 determinant: cos θ(r cos θ) − (−r sin θ)(sin θ) = r cos2 θ + r sin2 θ = r. Then, we multiply by
the 1× 1 entry, which is just 1.

We’ve gotten ∂(x,y,z)
∂(r,θ,z) = r, which means that technically, we should be replacing dx dy dz by

|r| dr dθ dz. However, as a rule, we only work with nonnegative values of r, so |r| and r are
always equal.

What if we use the wedge product to derive this substitution? Well, we have

dx ∧ dy ∧ dz = (cos θ dr − r sin θ dθ) ∧ (sin θ dr + r cos θ dθ) ∧ dz

= (r cos2 θ dr ∧ dθ − r sin2 θ dθ ∧ dr) ∧ dz

= (r cos2 θ + r sin2 θ) dr ∧ dθ ∧ dz

= r dr ∧ dθ ∧ dz.
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4.2 Spherical coordinates

Spherical coordinates are a more painful endeavor. Here, we have x = ρ sinϕ cos θ, y = ρ sinϕ sin θ,
and z = ρ cosϕ. Taking partial derivatives gives us

dx = sinϕ cos θ dρ− ρ sinϕ sin θ dθ + ρ cosϕ cos θ dϕ

dy = sinϕ sin θ dρ+ ρ sinϕ cos θ dθ + ρ cosϕ sin θ dϕ

dz = cosϕ dρ− ρ sinϕ dϕ.

From here, we can continue with the determinant approach:

∂(x, y, z)

∂(ρ, θ, ϕ)
= det

sinϕ cos θ −ρ sinϕ sin θ ρ cosϕ cos θ
sinϕ sin θ ρ sinϕ cos θ ρ cosϕ sin θ
cosϕ 0 −ρ sinϕ

 .

This looks back, but the rule of Sarrus only gives us two positive diagonals and two negative
diagonals, because of the 0 entry. It turns out that they’re easier to do in pairs:

• Adding the positive diagonal (sinϕ cos θ)(ρ sinϕ cos θ)(−ρ sinϕ) and subtracting the negative
diagonal (ρ cosϕ cos θ)(ρ sinϕ cos θ)(cosϕ) simplifies to −ρ2 sinϕ cos2 θ(sin2 ϕ+cos2 ϕ) or just
−ρ2 sinϕ cos2 θ.

• Adding the positive diagonal (−ρ sinϕ sin θ)(ρ cosϕ sin θ)(cosϕ) and subtracting the negative
diagonal (−ρ sinϕ sin θ)(sinϕ sin θ)(−ρ sinϕ) simplifies to −ρ2 sinϕ sin2 θ(cos2 ϕ + sin2 ϕ) or
just −ρ2 sinϕ sin2 θ.

Putting these two terms together lets us simplify further, to −ρ2 sinϕ(cos2 θ + sin2 θ) or just
−ρ2 sinϕ.

We have a negative sign in front; this is due to the order we chose for our variables. When we
take the absolute value of the Jacobian, the negative sign goes away, but ρ2 and sinϕ are both
guaranteed to be positive. Therefore we always replace dx dy dz by ρ2 sinϕ dρ dϕ dθ.

Doing the same thing again with wedge products would be suffering, but let’s combine the wedge
product approach with another trick: start halfway, from our cylindrical coordinates. We already
know that dx ∧ dy ∧ dz = r dr ∧ dθ ∧ dz. Well, in spherical coordinates, we have z = ρ cosϕ and
r = ρ sinϕ. Therefore dz = cosϕ dρ− ρ sinϕ dϕ, and dr = sinϕ dρ+ ρ cosϕ dϕ. Continuing where
we left off, we have

dx ∧ dy ∧ dz = r dr ∧ dθ ∧ dz

= ρ sinϕ(sinϕ dρ+ ρ cosϕ dϕ) ∧ dθ ∧ (cosϕ dρ− ρ sinϕ dϕ)

= −ρ sinϕ(sinϕ dρ+ ρ cosϕ dϕ) ∧ (cosϕ dρ− ρ sinϕ dϕ) ∧ dθ

= −ρ sinϕ(−ρ sin2 ϕ dρ ∧ dϕ+ ρ cos2 ϕ dϕ ∧ dρ) ∧ dθ

= −ρ sinϕ(−ρ sin2 ϕ− ρ cos2 ϕ) dρ ∧ dϕ ∧ dθ

= ρ2 sinϕ dρ ∧ dϕ ∧ dθ.
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