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1 Motivation for the scalar line integral

Thus far, we have dealt with integrals over a region. Line integrals are all the various kinds of
integrals we can take over a curve.

1.1 Visualizing the scalar line integral

We will start with the scalar line integral, and we will start with the scalar line integral in R2

because it will be easier to draw diagrams that way. The inputs that feed into this are:

• A function of two variables, f : R2 → R.

• A curve C in R2.

We will write ∫
C
f(x, y) ds

for the scalar line integral of f over C. The differential element “ds” here is not the kind that has
a useful meaning. You can think of the s as standing for “segment”, so that ds is an infinitesimal
segment of the curve C; ultimately, ds just means “we’re taking a scalar line integral”.

So what is this integral? Well, first, imagine that our function f is graphed in R3. Specifically, we
plot the graph of z = f(x, y), as in Figure 1a.
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(a) A plot of z = f(x, y)
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(c) Approximation by rectangles

Figure 1: Visualizing the scalar line integral of a 2-variable function

The 2-dimensional curve C lives in the xy-plane. We can imagine a 3-dimensional curve C ′ that
lives on the surface z = f(x, y): above every point (x, y, 0) on C, there is a point (x, y, f(x, y)) on
C ′. We can draw a surface in R3 stretched out between C and C ′ (as in Figure 1b). To put it

1This document comes from the Math 3204 course webpage: http://facultyweb.kennesaw.edu/mlavrov/
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differently, imagine that we build a wall in the shape of C, such that at point (x, y), the height of
the wall is f(x, y).

The ordinary, one-dimensional integral
∫ b
x=a f(x) dx represents the area between the x-axis and the

graph of y = f(x) over the interval [a, b], at least when f(x) is positive. Similarly, the scalar line
integral

∫
C f(x, y) ds represents the area between C and C ′, at least when f(x, y) is positive.

As a special case, when f(x, y) = 1, C will be parallel to C ′. In this case,
∫
C ds will just be the

length of C. This is called an arc length integral.

1.2 Formal definition

To define this integral formally, we go back to the intuition of Riemann sums. We can approximate
the one-dimensional integral by the area of rectangles, and we can approximate the scalar line inte-
gral by the area of rectangles—just ones built in 3 dimensions. See Figure 1c for an example.

Let the curve C be parameterized by r(t), where t ∈ [a, b]. Divide the integral [a, b] into intervals
of length ∆t. For each interval [ti, ti+1] where ti+1 = ti +∆t, we approximate a tiny portion of the
area between C and C ′ by a rectangle. Its height is f(r(ti)): the vertical distance from C to C ′

at the point r(t). Its width is ∥r(ti+1)− r(ti)∥: the horizontal distance between the current point
r(ti) and the next point r(ti+1).

Let’s rewrite the area of this rectangle slightly differently:

f(r(ti)) · ∥r(ti+1)− r(ti)∥ = f(r(ti)) ·
∥∥∥∥r(ti +∆t)− r(ti)

∆t

∥∥∥∥∆t.

This makes the sum of the areas of these rectangles,

(b−a)/∆t∑
i=1

f(r(ti)) ·
∥∥∥∥r(ti +∆t)− r(ti)

∆t

∥∥∥∥∆t,

have the form of a Riemann sum. The values of some integrand at each ti are multiplied by ∆t
and added up.

But what is that integrand? One of the factors is just f(r(t)). The other factor is the norm of a
difference ratio ∆r

∆t . When we take the limit as ∆t → 0, this ratio turns into a derivative dr
dt . We

take the resulting integral as our definition:∫
C
f(x, y) ds :=

∫ b

t=a
f(r(t))

∥∥∥∥drdt
∥∥∥∥dt.

Some care is necessary to prove that this is well-defined: in other words, that the result does not
depend on the particular choice of parameterization r(t). We will not prove this, but the idea is
that a different choice of parameterization corresponds to a substitution in the integral.

1.3 An example

Let’s integrate f(x, y) = x2 over the unit circle.
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Our first step is always to parameterize the curve. Here, we will work with the standard parame-
terization

r(t) = (cos t, sin t), t ∈ [0, 2π].

Our first step is to take the derivative. It is common to write dr
dt as (− sin t, cos t). I will

write it as − sin t i + cos t j, for reasons I’ll explain in the next lecture. Either way, ∥dr
dt ∥ is√

(− sin t)2 + (cos t)2 =
√
1 = 1 for all t.

A parameterization with this property is called a natural parameterization or unit-speed
parameterization of its curve. Intuitively, if r(t) describes the position of a particle at time t,
then ∥dr

dt ∥ describes its speed at time t, which is where we get the second name.

The natural parameterization is convenient because it makes our integration easier: we just have
to integrate f(r(t)). Here, r(t) = (cos t, sin t) breaks down into x(t) = cos t and y(t) = sin t, so if
f(x, y) = x2, then f(r(t)) = cos2 t.

Therefore∫
C
x2 ds =

∫ 2π

t=0
cos2 tdt =

∫ 2π

t=0

1 + cos 2t

2
dt =

∫ 2π

t=0

1

2
dt+

∫ 2π

t=0

cos 2t

2
dt = π + 0 = π.

2 Scalar line integrals in 3D

2.1 The definition

The scalar line integral of a function f : R3 → R is defined in exactly the same way:∫
C
f(x, y) ds :=

∫ b

t=a
f(r(t))

∥∥∥∥drdt
∥∥∥∥dt.

We cannot visualize the integral in exactly the same way any longer, because that would require
us to plot a hypersurface w = f(x, y, z) in 4-dimensional space, and that’s not particularly helpful.
So we need new intuition for what this integral means.

An analogy that’s better than nothing (even if it’s vague) is the space dust analogy. Imagine
that C is the path a spaceship takes traveling through space. At every point in space, there’s
some amount of space dust—some regions of space may be more dusty than others, so we need a
function f(x, y, z) to tell us the amount of space dust at a point (x, y, z). Traveling through space,
the spaceship collects all the space dust at every point it visits; the scalar line integral is the total
amount of space dust collected.

If you don’t like spaceships, you can tell yourself other stories about what the scalar line integral is,
but it’s important to remember what the scalar line integral is not, to make sure that your intuition
does not mislead you.

For example, suppose that f(x, y, z) represents the intensity of solar radiation at a point (x, y, z).
A spaceship is heated up by solar radiation as it travels through space. Is it reasonable to measure
the total amount of heat collected by the spaceship by a scalar line integral?

It’s not! The problem is that the effect of solar radiation would also depend on time. By going
faster along the same path, the spaceship can reduce the amount of solar radiation it has to endure.
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On the other hand, if the spaceship stopped for a few days at a point (x, y, z), it would accumulate
a few days’ worth of radiation from that point. These are changes in the parameterization r(t) that
do not change the curve C, so they should not affect the scalar line integral, and so that integral
does not describe our solar radiation thought experiment.

(We must assume that our “space dust” is a finite resource that our spaceship collects once it visits
a region, which is then used up. Traveling more slowly or more quickly will not change the amount
of space dust collected.)

2.2 Examples

Let’s take the function f(x, y, z) = xyz, and integrate it over the line segment (0, 0, 1) to (1, 1, 0).

We can parameterize this line segment by r(t) = (t, t, 1− t) where t ∈ [0, 1]. To set up the integral,
we need to find two quantities: f(r(t)) and ∥dr

dt ∥.

• f(r(t)) is f(x, y, z) = xyz evaluated at the point (x, y, z) = (t, t, 1− t): it is t2(1− t) or t2− t3.

• dr
dt = i+ j− k, so ∥dr

dt ∥ =
√
12 + 12 + (−1)2 =

√
3.

Integrating, we get∫
C
xyz ds =

∫ 1

t=0
(t2 − t3)

√
3 dt =

(
t3

3
− t4

4

)√
3

∣∣∣∣1
t=0

=
1

12

√
3.

Let’s take a different path from (0, 0, 1) to (0, 1, 0): the segmented path shown in Figure 2b rather
than the straight line in Figure 2a that we took first.
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(a) Segment from (0, 0, 1) to (1, 1, 0)
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(b) A piecewise linear path

Figure 2: Two ways to go from (0, 0, 1) to (1, 1, 0)

Here, it makes sense to split up the integral into three integrals over the three segments C1, C2,
and C3. We can combine the pieces by adding up the three integrals:∫

C1

xyz ds+

∫
C2

xyz ds+

∫
C3

xyz ds.

We don’t have to do anything for the first integral. Everywhere on C1, xyz = 0, because x = 0;
therefore we are integrating 0, and we get 0.
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We can parameterize C2 by r(t) = (t, 1, 1) where t ∈ [0, 1]. Then dr
dt = i, which has norm 1,

and ∫
C2

xyz ds =

∫ 1

t=0
(t · 1 · 1) · 1 dt = t2

2

∣∣∣∣1
t=0

=
1

2
.

One way that people like thinking about such paths, where only x changes, is that we’ve rewrit-
ten ∫

C2

xyz ds =

∫ 1

x=0
x · 1 · 1 dx.

That’s because a special type of unit-speed parameterization is a parameterization where one
variable is equal to t while the other two are held constant.

Similarly, for C3, since only z changes, we can write∫
C3

xyz ds =

∫ 1

z=0
1 · 1 · z dz =

1

2
.

(This should not be an integral from z = 1 to z = 0, or rather, we want the scalar line integral over
C3 to be unoriented.)

Altogether, the three integrals add up to 0 + 1
2 + 1

2 = 1. It’s worth pointing out that two different
paths give us different answers in this setting! In general, scalar line integrals are always path-
dependent: if you pick a path with more “space dust” on it, you’ll collect more space dust as you
travel it.

2.3 Mass of a thin wire

Scalar line integrals also come up when we approximate very thin solid regions by a curve.

For example, suppose that we have a wire bent into the parabolic curve parameterized by r(t) =
(t
√
2, t

√
2, 1− t2) where t ∈ [0, 1]. The wire is not exactly shaped like the curve, but if the thickness

is negligible, we might approximate it by the curve.

What if we want to find the mass of the wire?

In 3D solid regions, mass is the integral of density over the region. Here, because we’re integrating
over a curve, the quantity we want is not quite density. Instead, we want the mass per unit
length of the wire at a point.

As before, this is a function δ, which might be specified in two ways. It might be a function
δ(x, y, z), which tells us the mass per unit length at point (x, y, z) on the curve C. (In this case,
the function might be defined even outside C, but it doesn’t have meaning there.) Or, it might be
a function δ(t), which tells us the mass per unit length at point r(t).

In this example, let’s suppose that δ is specified in the second way: δ(t) = t. This is a wire that’s
vanishingly thin at one end, and getting steadily thicker towards the other end.

The mass integral is the same as other mass integrals, except it’s a line integral. We will integrate
δ(t), which will take the place of f(r(t)). We still need to work out ∥dr

dt ∥: since
dr
dt =

√
2 i+

√
2 j−2tk,
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it is equal to
√
4 + 4t2 = 2

√
1 + t2. Now we can compute the mass as∫ b

t=a
δ(t)

∥∥∥∥drdt
∥∥∥∥dt = ∫ 1

t=0
2t
√

1 + t2 dt =

∫ 2

u=1

√
udu =

2

3
u3/2

∣∣∣∣2
u=1

=
2

3
(2
√
2− 1).

(Here, we applied the u-substitution u = 1 + t2, with du = 2t dt.)

In similar cases, we’ve also looked at the center of mass of a solid region. The center of mass of a
wire can be computed in the same way.

In this problem, we would define

x =

∫ b
t=a x(t)δ(t)

∥∥dr
dt

∥∥dt∫ b
t=a δ(t)

∥∥dr
dt

∥∥dt =

∫ 1
t=0(t

√
2) 2t

√
1 + t2 dt

2
3(2

√
2− 1)

and set up integrals for y and z in similar ways. The specific integral here is not very fun to do, so
we’ll skip it.
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