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Lecture 8: Vector line integrals

September 11, 2023 Kennesaw State University

1 The work integral

The vector line integral is the integral of a vector field F along an oriented curve C; it is de-
noted ∫

C
F · dr.

If F = M i+N j+ P k, this integral is also written∫
C
M dx+N dy + P dz.

We’ll talk about why that is later.

We will begin from an application: the vector line integral of F along C is equal to the work done
by a force F on a particle moving along C. We will derive what the vector line integral “should be”
for this to be the true, and we will make that our general definition of the vector line integral.

1.1 Deriving the formula

We know that when F is a constant force, and an object moves along vector s, then the work done
on the object by F is given by the dot product F · s.

In general, the path of the object may be more complicated, and the force isn’t constant either.
To understand the complicated case from the simple one, we’ll take an approximation: we divide
the curve C into many tiny segments, and compute the work done as the object travels along each
segment. If a segment is very short, then the path of the object along it is approximately straight,
and the force can’t possibly change too much, either.

Say that the curve C is parameterized by r(t) where t ∈ [a, b]. Here, our curve is oriented, and it’s
important for r(t) to respect that: as t increases from a to b, r(t) must move from the start of the
curve to the end, matching the orientation of the curve.

We divide the interval [a, b] into many tiny intervals:

[a, b] = [t0, t1] ∪ [t1, t2] ∪ · · · ∪ [tn−1, tn]

where, for concreteness, ti = a+ i∆t and ∆t = b−a
n . At time ti, the object is at position r(ti), and

the force acting on it is F(r(ti)). Over the time interval [ti, ti+1], the object approximately moves in
a straight line along the vector r(ti+1)− r(ti), and the force approximately stays equal to F(r(ti)),

1This document comes from the Math 3204 course webpage: http://facultyweb.kennesaw.edu/mlavrov/

courses/3204-fall-2023.php
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so the work done in that interval of time is approximately F(r(ti)) · [r(ti+1) − r(ti)]. The overall
work done is

n−1∑
i=0

F(r(ti)) · [r(ti+1)− r(ti)].

To make this sum more similar to a Riemann sum, write r(ti+1) − r(ti) as
r(ti+1)−r(ti)

∆t ·∆t. Yet a

third small-∆t approximation: r(ti+1)−r(ti)
∆t is approximately equal to dr

dt (ti). So the work done is
approximately

n−1∑
i=0

F(r(ti)) ·
dr

dt
(ti)∆t.

In the limit as n → ∞, ∆t → 0, and the approximations should resolve to the true amount of work
done. But the limit of this Riemann sum as n → ∞ is an integral:

lim
n→∞

n−1∑
i=0

F(r(ti)) ·
dr

dt
(ti)∆t =

∫ b

t=a
F(r(t)) · dr

dt
dt.

Now, in order for the vector line integral to compute this important quantity from physics, we
define the vector line integral as ∫

C
F · dr :=

∫ b

t=a
F(r(t)) · dr

dt
dt.

Think of this notation for the vector line integral as a mnemonic for the operations we do to
compute it; replacing dr by dr

dt dt looks like the rule for integration by substitution. (It’s not really
a substitution, because we don’t otherwise know how to make sense of an integral with dr.)

Let F = M i+N j+ P k, and let r(t) = (x(t), y(t), z(t)). Then we can write this integral as∫
C
F · dr =

∫ b

t=a

(
M(r(t))

dx

dt
+N(r(t))

dy

dt
+ P (r(t))

dz

dt

)
dt.

For this reason, the vector line integral is sometimes written as∫
C
M dx+N dy + P dz.

We will look at the quantity M dx+N dy+P dz a bit more closely later; it is called a differential
form (more precisely, a 1-form, because there’s one differential on every term). The idea is that
once you do a change of variables to turn dx into dx

dt dt, and the same for dy and dz, this turns into
the usual form of the vector line integral.

1.2 An example

Let’s try this out. Let F = x i + y j + z k: a force that pushes outward from the origin, and gets
stronger the further out we go. Suppose that a particle moves from (0, 0, 0) to (1, 1, 1) along the
curve r(t) = (t, t2, t3), where t ∈ [0, 1]. What is the net work done by F on the particle?
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Here, F(r(t)) = t i+ t2 j+ t3 k and dr
dt = i+ 2t j+ 3t2 k. Taking their dot product, we get

F(r(t)) · dr
dt

= t · 1 + t2 · 2t+ t3 · 3t2 = t+ 2t3 + 3t5.

Therefore the work done by F is∫
C
F · dr =

∫ 1

t=0
t+ 2t3 + 3t5 dt =

1

2
t2 +

1

2
t4 +

1

2
t6
∣∣∣∣1
t=0

=
3

2
.

Let’s try some variations. If we parameterize the same curve C by r(t) = (2t, 4t2, 8t3), where
t ∈ [0, 12 ], then we describe a particle moving along the curve twice as fast. The integral will not
change! The integral we get will be ∫ 1/2

t=0
4t+ 32t3 + 192t5 dt

which is still equal to 3
2 ; in fact, we can obtain an integral equivalent to the first by the substitution

u = 2t.

This is a general fact: the vector line integral does not depend on the parameterization
of the curve, provided that the orientation is respected. If we reverse the orientation, the
value of the integral will change sign and be −3

2 , instead.

This particular example, for mysterious reasons we’ll learn about later, has a further degree of
symmetry. Suppose that we take a different path C ′ from (0, 0, 0) to (1, 1, 1): the straight-line path
parameterized by r(t) = (t, t, t), where t ∈ [0, 1]. Here,

F(r(t)) · dr
dt

= (t i+ t j+ tk) · (i+ j+ k) = 3t,

so the work done by F is ∫
C′

F · dr =

∫ 1

t=0
3tdt =

3

2
t2
∣∣∣∣1
t=0

=
3

2
.

It is still the same!

This is not a universal property of the vector line integral, but it isn’t just a coincidence either. It
is something special to this particular vector field F. In physics, there is a name for a force that
obeys this property: such a force is called a conservative force. In mathematics, we sometimes
call F a conservative vector field, though when we look at this property later, we’ll have other
names for it as well.

2 Other interpretations of the vector line integral

2.1 Flow and circulation integrals

Staying within the realm of physics for the moment, suppose that our vector field F is a velocity
field: F(x, y) gives the velocity of some kind of fluid (such as air, or water) at the point (x, y). Can
we give an interpretation to ∫

C
F · dr
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in this setting?

In this context, the vector line integral is called a flow integral. The flow of F along C is another
kind of wacky metric—you can tell because its units will be squared length over time. You can think
of it as measuring a “net velocity” of how much our fluid follows the curve C, accumulated over the
entire curve. (So the velocity is multiplied by a length.) Apparently,2 this is useful when analyzing
the aerodynamics of airplanes, where the difference between the flow of air along curves tracing the
bottom versus the top of the wing is what tells us how much lift the airplane is getting.

As a special case, suppose C is a closed curve: it ends where it starts. (Remember, C is still an
oriented curve, so in addition to drawing a loop, we decide to go either clockwise or counterclockwise
around the loop.) Then the flow is called circulation, and measures the tendency of this fluid
to follow this curve. If the curve C is going around a whirlpool, then we expect to get a high
circulation (provided that the direction of C matches the direction of the whirlpool, of course;
otherwise the circulation will be negative).

Borrowing from the velocity field setting, we tend to call the vector line integral a circulation
integral in all cases where C is a closed curve—even if there’s no fluid dynamics happening at all.
Generally, the circulation integral measure the net tendency of the vector field F to loop around
the curve C.

Let’s look at an example. Take the two-dimensional vector field F = x i + (x + y) j, and let C be
the counterclockwise unit circle, with the usual parameterization r(t) = (cos t, sin t), t ∈ [0, 2π].
You can see both F and C displayed in Figure 1. Can we identify how much F is looping around
the unit circle?

x

y

Figure 1: A circulation integral: how much is the vector field looping around the unit circle?

We have F(r(t)) = cos t i + (sin t + cos t) j, and dr
dt = − sin t i + cos t j. Taking the dot product of

these two vectors, we get

− sin t cos t+ (sin t+ cos t) cos t = cos2 t.

Now we integrate:∫
C
F · dr =

∫ 2π

t=0
cos2 tdt =

∫ 2π

t=0

cos 2t+ 1

2
dt =

(
sin 2t

4
+

t

2

)∣∣∣∣2π
t=0

= (0 + π)− (0 + 0) = π.

2I am not a physicist.
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What does this mean?

Well, first of all, it suggests that overall, this vector field does have a tendency to loop counter-
clockwise around this circle.

How much of a tendency? Well, the circumference of this circle is 2π, so a circulation of π means
that we’re getting the same circulation as we would if our fluid constantly had a velocity of 1

2 in
the direction of the circle, at every point of C. That’s not what’s going on, of course: at some
points such as (0, 1) or (0,−1), the fluid is moving perpendicular to C, and at other points, it has
mixed tendencies. The circulation is just the aggregate effect of what’s going on at all those points
at once.

2.2 Vector vs. scalar line integrals

Let’s look at the two formulas side by side:∫
C
f(x, y, z) ds =

∫ b

t=a
f(r(t))

∥∥∥∥drdt
∥∥∥∥ dt

∫
C
F · dr =

∫ b

t=a
F(r(t)) · dr

dt
dt.

We can express the second of these integrals in terms of the first, somewhat.

Let T(t) be the result of dividing dr
dt by its norm. This gives a unit vector tangent to C at the

point r(t) (hence the awkward notation). In terms of this unit vector, we have∫
C
F · dr =

∫ b

t=a
F(r(t)) ·T(t)

∥∥∥∥drdt
∥∥∥∥ dt.

(We divided by the norm, so we have to multiply by it again.) This is the scalar line integral of a
quantity that depends in part on C itself: f(r(t)) = F(r(t)) · T(t). (This quantity is not defined
for points not on C.) For this reason, you sometimes see a slightly different notation for the vector
line integral: ∫

C
F · dr =

∫
C
F ·Tds.

Every once in a while, when T(t) has a very convenient form, this is actually helpful.

There’s another way that the two types of integrals sometimes interact. Suppose that the curve
C is actually a very boring curve: it is a line segment parallel to the x-axis, so that the y- and
z-coordinates of points on C are all the same. In this case, the scalar line integral’s ds (which
intuitively represents a small change along C) can be replaced by dx, and the scalar integral∫

C
f(x, y, z) dx

that we get is almost the same as the vector line integral∫
C
f(x, y, z) dx =

∫
C
f(x, y, z) dx+ 0dy + 0dz

of the vector field F(x, y, z) = f(x, y, z) i along C.

I say almost the same, because one of these cares about orientation, and the other does not.
The correspondence here works out provided that C is oriented in the direction of increasing x;
otherwise, the scalar and vector line integrals have opposite signs!
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