Math 3204: Calculus IV! Mikhail Lavrov

Lecture 9: Flux and the flux integral
September 13, 2023 Kennesaw State University

1 Flux

In summary of the last few lectures, we have two line integrals that we’re capable of taking right
now. The first,

/ F(a,y,2) ds,
C

is the scalar line integral, which accumulates the value of a scalar function f along the curve C.
The second,

/F-dr—/Md:L‘+Ndy+sz-/F-Tds,
C C C

is the vector line integral, which accumulates the amount that the vector field F follows C along
the curve C.

Both of these are equally valid in two or three dimensions; in fact, if we wanted to generalize
everything we’ve done for these integrals to R™, nothing would change. Flux, the new quantity
we want to introduce, is different: it will only correspond to a line integral when we’re working in

R2.

The reason is that flux is a measure of how much a vector field F crosses a boundary. Imagine
stretching out a net in a body of water, or flying a kite: in both cases, you may well be interested
in knowing how much water (or air) is crossing this boundary each second.

To draw a boundary between two parts of R™, you need an (n — 1)-dimensional object. In R2, you
can separate two regions by drawing a curve. In R3, however, it takes a surface to separate two
regions. If you stretch your imagination, you might be able to picture R* (4-dimensional space)
and how it takes a 3-dimensional boundary there to separate two regions.

For this reason, we will only consider flux in R? today, which we’ll be able to describe as a line
integral. We will return to flux when we begin working with surface integrals in R3.

In two dimensions, the flux of F across a curve C will measure the amount that the vector field F
crosses C. 1t is a signed quantity: F can cross C in either direction, and we want these effects to
have opposite signs.

For this reason, we need C' to have an orientation, but the meaning we attach to the orientation is
different. For the ordinary vector line integral, an orientation of C' was a direction along C. For
the flux line integral, an orientation of C' is a direction across C'. Which way of crossing C' do we
consider “positive”, and which way do we consider “negative”?
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We will adopt a convention for turning one of these orientations into the other. This convention is
arbitrary: you cannot deduce from first principles which decision we make here. The rule is:

Our old notion of orientation for curve C' in R? gives a preferred “positive” direction of travel
along C'. As you're traveling along C' in the positive direction, one side of the curve is on the
left, and one side is on the right. Our convention is that the positive direction of crossing
C is from left to right.

Going the other way, suppose that you have a curve C for which we’ve picked a preferred
“positive” direction of crossing C. Then we can choose a direction of travel along C so that
the positive direction of crossing C' is going from your left to your right. That direction of
travel is going to be our positive direction along C.

As a special case, suppose C' is a simple closed curve—*“simple” meaning that it does not
cross itself. In this case, C' is the boundary of a region R in the plane.

By default, we prefer to measure the outward flux across C: that is, we want the positive
direction of crossing C to be the direction leaving the region R. This means that we want the
orientation along C' to be chosen so that R is on our left. Therefore our default orientation
of the boundary of R is the curve that goes counterclockwise around R.

Some examples where the flux across a curve is clearly positive or negative are shown in Figure 1.
Of course, it’s possible for a vector field to have a flux across a curve that’s positive at some points,
and negative in others. In that case, these contributions will partially cancel out when we compute
the net flux across the curve.
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(a) Positive flux across curve C (b) Negative flux across curve C' (c) Positive outward flux

Figure 1: Three examples of positive and negative flux

2 Defining the flux integral

As motivation for the flux integral, consider the “scalar form” of the vector line integral:

Here,

/F-Tds.
c

we think of the vector line integral (which, recall, computes the total amount that F follows

the curve C) in two steps. First, we compute F - T at each point on the curve C: this measures



how much F follows the curve C at that point. Then, we integrate that quantity over the curve C.
This works out by the identity
dr/dt > H

/i (Fer H - (F(r(“ e /]

The flux integral will be defined starting from the same idea. We will write it as

/F-nds
C

where n will be a unit normal vector to the curve C', pointing in the positive direction crossing C.
(As with T, the vector n is really a function n(¢) that tells us the normal vector to the curve C at
the point r(t).)

F(r(t)) St

t a

How do we compute n, given T? The idea is that the positive direction across a curve, from our
convention, is always a 90° clockwise turn from the positive direction along the curve.

We will denote this clockwise turn as n = T x k. Viewing n and T as three-dimensional vectors
which happen to be parallel to the xy-plane, this x is the cross product. If you haven’t dealt with
the cross product before (or in a while), we’ll talk about it in detail later on in the semester. For
now, we just need to know that it satisfies the rule

(ai+bj)xk=>bi—aj.

You can check for yourself on a couple of examples that bi — aj is really a 90° clockwise rotation
of ai+ bj. (Or you can look at the examples in Figure 2.)
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Figure 2: Rotating a vector with the xk operation

Returning to our integral: the vector T (really, T(¢)) is a scaled version of the vector dt, and the
operations of rotating a vector and scaling a vector commute. So instead of rotating T by 90°, we
can rotate % by 90°. This gives us a formula for the flux integral:

/CF-nds—/t;F(r(t))- (j:;xk) dt.

Before we do an example there is another way to look at the flux integral. If r(t) = (z(t),y(t)),

then 4 = dzj 4 dtJ, which means that dr X k= d i— —J Now let’s write F as M i+ N j and

dt
expand out the integrand.

t



We get:

Pr(e)- (G k) = (reo)i+ M) - (- 53
= M) Y~ Nem)

So it makes sense to write the flux integral as

/CF-nds:/tba (M(r(t))ii—N(r(t))jZ) :/CMdy—Ndx,

in a similar way to how we can write the vector line integral as

/F-dr—/Md:U—l-Ndy.
C C

From this point of view, the integral of a differential 1-form like, say, e**¥ dz + cos y dy around C is
indifferent to how we arrived at it. We can think of it as the integral of F1 = e*™¥ i+ cosy j along
C, or we can think of it as the flux integral of Fo = cosyi— e*™¥ j across C: either way, we would
arrive at the integral

/ etV dx + cosy dy
C

which we would compute in the same way.

3 Examples of flux integrals

First, let’s do a quick example which we can expect to be 0. Take F to be the constant vector field
21+ 3j, and take C' to be the counterclockwise unit circle. The flux of F across C' is the flux of F
outward from the unit circle... but we expect this to be 0, because on net, F is neither entering
nor leaving the unit circle. The amount that F enters the circle from one side is exactly equal to
the amount that F leaves the circle from the other side. (See Figure 3a.)
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(a) Outward flux of the vector field F = 21+ 3 (b) Outward flux of the vector field F = xi+yj
across the unit circle across the boundary of a triangle

Figure 3: Two flux integrals

We can verify that this intuition is correct by computing the flux integral.



If we parameterize the unit circle by r(t) = (cost,sint), then 9 = —sinti+ costj, and therefore

dt
% x k = costi+ sintj. In other words, % x k is equal to the radial vector pointing from the
origin to r(t). This makes sense: the normal vector pointing out of the circle is the vector pointing

directly away from (0,0), the center of the circle.

The vector field F is 21+ 3 j, which we don’t even need to evaluate at r(t), because it’s constant.
Therefore F(r(t)) - (& x k) is equal to 2cost + 3sint, and the flux integral is equal to

2m 2m
/ (2cost + 3sint)dt = (2sint — 3cost) =0.
t=0 t=0

By the way, there’s a trend you should grow used to seeing in these integrals: when you integrate
sint or cost over an entire period of that function, you get 0.

Now let’s do another integral. Here, our vector field will be the expanding vector field F = zi+yj.
Our curve will be the boundary of the triangle with corners at (1,—1), (0,1), and (—1,—1). We
want the outward flux across this boundary, so the curve should be oriented counterclockwise.

The triangle has a piecewise boundary, so we’ll compute the flux integral piece by piece, and we’ll
see three ideas as we go.

First, the piece from (1, —1) to (0, 1). This is parameterized by r(t) = (1—t,2¢t—1), where t € [0, 1].
This means that % =—i+2j, and % x k =21+ j. Meanwhile, F(r(t)) = (1 —¢)i+ (2t — 1)j, so
the flux integral across this side of the triangle is

1
/t ((1—t)i+(2t—1)j)-(2i+j)dt=/

=0 t=0

1 1

(2—2t+2t—1)dt:/ 1dt = 1.
t=0

Second, the piece from (0,1) to (=1, —1). Here, we’ll use the other expression for the flux integral:

it is
1
d d
/Mdy—Ndm:/mdy—ydm:/ (x(t)y—y(t)x> dt.
C C t=0 dt dt

The parameterization of this line segment is r(t) = (—t, 1—2t), where ¢t € [0, 1]. Therefore x(t) = —t,
y(t) =1—2t, % = —1, and % = —2, so we get

/1 (—t(=2)—(1—2t)(—-1)) dt = /1 1dt =1.

=0 t=0
It’s not surprising that this is identical to the previous integral: these two sides of the triangle are
symmetric.

For the final piece, from (—1,—1) to (1,—1), we’ll think of the flux integral in its “scalar integral

version”: as
/ F - nds.
C

We can look at the boundary and directly see what n should be: it is the unit normal vector pointing
out of this boundary of the circle, and so it should point straight down: n = —j. (In general, n is
a function of ¢, but here it is a constant function.) Therefore F -n = (xi+yj) - (=j) = —y.

Moreover, —y is the constant 1 over this entire piece, and the scalar line integral of 1 over any curve
is just its arc length. The length of this side of the triangle is 2, so the flux across it is 2. We get
a total flux of 1 + 1 4+ 2 = 4 out of the triangle.
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