Graph Theory Homework 3

Mikhail Lavrov

due Friday, September 24, 2021

1 Short answer

1. When we're being very careful, we define the complete bipartite graph $K_{4,4}$ as the graph with vertices $\left\{v_{1}, v_{2}, v_{3}, v_{4}, w_{1}, w_{2}, w_{3}, w_{4}\right\}$ and edges $\left\{v_{i} w_{j}: 1 \leq i, j \leq 4\right\}$.
Let G be the graph $K_{4,4}-\left\{v_{1} w_{1}, v_{2} w_{2}, v_{3} w_{3}, v_{4} w_{4}\right\}$: the complete bipartite graph with these four edges removed. Find an isomorphism between G and the cube graph Q_{3}.
2. Let T be tree whose degree sequence has the form $4,3,2,1,1,1, \ldots$ (that is, $4,3,2$ followed by some number of 1 's).
(a) Determine the number of 1's in the degree sequence of T.
(b) There is more than one possibility for a tree T with this degree sequence. Give two nonisomorphic trees with this degree sequence, and explain why they are not isomorphic.
3. Count the number of spanning trees of the complete bipartite graph $K_{2,5}$.

2 Proof

4. Prove that, for all n, there is an n-vertex graph containing a vertex of every degree between 1 and $n-1$. One of these degrees will occur twice.
You have already written a rough draft of this solution; now, write a final draft.
5. Let G be a connected graph with n vertices and n edges. Prove that G has exactly one cycle. (That is, exactly one subgraph which is a cycle graph.)
Write a rough draft of the solution. I will give you feedback, and you will write a final draft of your proof as part of Homework 4.
