Graph Theory Homework 4

Mikhail Lavrov

due Friday, October 8, 2021

1 Short answer

1. When we were discussing regular graphs in class, we found the following five connected 3regular graphs on 8 vertices.

There is a short argument for why none of these graphs have cut vertices (which applies to all of them at once). What is it?
2. The friendship graph F_{n} has $2 n+1$ vertices x, y_{1}, \ldots, y_{n}, and z_{1}, \ldots, z_{n}. The vertex x is adjacent to all other vertices; also, vertices y_{i} and z_{i} are adjacent for $i=1, \ldots, n$. There are no other edges.
(a) Draw a diagram of the friendship graph F_{4}.
(b) What are the blocks of the friendship graph F_{4} ? Label them in your diagram.
(c) How many blocks does the friendship graph F_{n} have in general, in terms of n ?
3. Let G be the graph below.

(a) Find a 3 -vertex $s-t$ cut in G.
(b) Find three internally disjoint $s-t$ paths in G. Give a one-line explanation of why the existence of these paths means that $\kappa(s, t)$ is at least 3 .

2 Proof

4. Let G be a connected graph with n vertices and n edges. Prove that G has exactly one cycle. (That is, exactly one subgraph which is a cycle graph.)

You have already written a rough draft of this solution; now, write a final draft.
5. Let G be an arbitrary graph with at least 2 vertices. We construct a graph H by adding two vertices x and y to G, with every possible edge between vertices of G and x, y.

For example (and this is just an example), if G is the graph below on the left (with 2 connected components), then H will be the graph below on the right:

Prove that H will never have any cut vertices, no matter what graph G we start with.
Write a rough draft of the solution. I will give you feedback, and you will write a final draft of your proof as part of Homework 5.

