Graph Theory Homework 8

Mikhail Lavrov

due Friday, December 3, 2021

1 Short answer

1. Draw the octahedron graph in the plane without crossings, and find a vertex coloring of the octahedron graph with 3 colors.
2. Let G be the graph shown below.

(a) Find the maximum degree $\Delta(G)$. What inequality on the chromatic number can we get from this maximum degree?
(b) Find the clique number $\omega(G)$. What inequality on the chromatic number can we get from this clique number?
(c) Find the independence number $\alpha(G)$. What inequality on the chromatic number can we get from this independence number?
(d) Find the chromatic number $\chi(G)$.
3. In the graph coloring game, two players take turns coloring the vertices of a graph. There is a supply of available colors; a turn in the game consists of picking an uncolored vertex of the graph, and giving it a color different from any of the adjacent vertices.

The first player wins if the graph is fully colored. The second player wins if it becomes impossible to finish the game: if there is an uncolored vertex which cannot be given a color.

Suppose that this game is played on the cube graph, with two colors available: red and blue. How can the second player win?

2 Proof

4. Prove that an n-vertex graph G with maximum degree $\Delta(G)$ has an independent set with at least $\frac{n}{\Delta(G)+1}$ vertices.
You have already written a rough draft of this solution; now, write a final draft.
