Calculus IV Homework 1

Mikhail Lavrov

due Friday, August 25, 2023

- 1. Set up each of the following integrals, using cylindrical coordinates. You don't have to evaluate the integrals.
 - (a) The integral for the volume of a solid ssphere of radius 1 centered at the origin. (Yes, it would make more sense to use spherical coordinates. I'm being unreasonable.)
 - (b) The integral of x + y + z over the interior of a cone whose base is a disk of radius 1 in the xy-plane centered at the origin, and whose tip is the point (0,0,2).
 - (c) The integral of $x^2 + y^2 + z^2$ over the half-cylinder bounded by the inequalities $x^2 + y^2 \le 1$, $0 \le z \le 3$, and $y \ge 0$.
- 2. Set up each of the following integrals, using spherical coordinates. You don't have to evaluate the integrals.
 - (a) The integral for the volume of the portion of the solid sphere of radius 2 centered at the origin with $x \ge 0$, $y \ge 0$, and $z \ge 0$.
 - (b) The integral of $x^2 + y^2$ over a spherical shell of thickness 1 and inner radius 3 centered at the origin.
 - (c) The integral for the volume of a sphere of radius $\frac{1}{2}$ centered at $(0, 0, \frac{1}{2})$. (Yes, it would make more sense to center the sphere at the origin. I'm being unreasonable again.)
- 3. Perform each of the substitutions given below. You don't have to evaluate the resulting integrals. For the sake of variety, use the Jacobian at least once, and use the $dx \wedge dy$ method at least once.
 - (a) Rewrite the integral

$$\int_{x=2}^{5} \int_{y=-x}^{2-x} \sqrt{x^2 + 1} \, \mathrm{d}y \, \mathrm{d}x$$

using the substitution $u = x^2 + 1$, v = x + y.

(b) Rewrite the sum of two integrals

$$\int_{x=-1}^{0} \int_{y=-x-1}^{x+1} (x^2 + xy) \, \mathrm{d}y \, \mathrm{d}x + \int_{x=0}^{1} \int_{y=x-1}^{1-x} (x^2 + xy) \, \mathrm{d}y \, \mathrm{d}x$$

as a single integral using the substitution u = x + y, v = x - y.

(c) Rewrite the integral

$$\iint_R \mathrm{d}y \,\mathrm{d}x$$

where R is the region bounded by $1 \le xy \le 4$ and $\frac{1}{2} \le \frac{x}{y} \le 2$, using the substitution $u = xy, v = \frac{x}{y}$.

- 4. Find the centroid of the solid hemisphere which is the portion of the sphere of radius 1 centered at (0,0,0) that lies above the plane z = 0.
- 5. Compute the integral

$$\int_{x=1}^{7} \int_{y=x-1}^{x+1} \int_{z=x}^{3x} \frac{y-1}{2x} \, \mathrm{d}z \, \mathrm{d}y \, \mathrm{d}x$$

by first performing the substitution $u = \frac{x-1}{2}$, v = x - y, $w = \frac{z}{x}$.