Calculus IV Homework 3

Mikhail Lavrov

due Friday, September 22, 2023

1. Each of the diagrams below is the graph of one of the vector fields

$$
\begin{aligned}
& \mathbf{F}_{1}=\mathbf{i}+x \mathbf{j} \\
& \mathbf{F}_{2}=3 \mathbf{i}-2 \mathbf{j} \\
& \mathbf{F}_{3}=(x-1)^{2} \mathbf{i}+(y-1)^{2} \mathbf{j} \\
& \mathbf{F}_{4}=y \mathbf{i} \\
& \mathbf{F}_{5}=y \mathbf{i}-2 x \mathbf{j}
\end{aligned}
$$

For each diagram, give the vector field (one of $\mathbf{F}_{1}, \ldots, \mathbf{F}_{5}$) that it is the graph of.

(a)

(b)

(c)
2. Let $\mathbf{F}=z \mathbf{i}+x \mathbf{j}+y \mathbf{k}$, and let C be the triangular path from $(1,0,0)$ to $(0,1,0)$ to $(0,0,1)$ back to $(1,0,0)$ shown in the diagram below.

Find the circulation of \mathbf{F} around C.
3. Determine whether these vector fields are gradient fields, and if they are, find a potential function for them.
(a) $\mathbf{F}=4 x^{2} y \mathbf{i}+\frac{4}{3}\left(x^{3}-y^{3}\right) \mathbf{j}$.
(b) $\mathbf{G}=z \cos (y+z) \mathbf{i}-x z \sin (y+z) \mathbf{j}-x z \sin (y+z) \mathbf{k}$.
(c) $\mathbf{H}=(x+y) \mathbf{i}+(x-z) \mathbf{j}-(y+z) \mathbf{k}$.
4. Let $\mathbf{F}=\mathbf{i}+x^{2} \mathbf{j}$, and let C be the boundary of the region $\left\{(x, y): x^{2}+y^{2} \leq 1\right.$ and $\left.x \geq 0\right\}$: the right half of the unit disk. Find the outward flux of \mathbf{F} across C.
5. (a) Let $f(x, y, z)=x e^{y-z}$. Compute the gradient field $\mathbf{F}=\boldsymbol{\nabla} f$.
(b) Let C be the coiled spring parameterized by $\mathbf{r}(t)=(\cos t, \sin t, t / \pi)$, where $t \in[0,4 \pi]$. Compute the vector line integral $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$.

