Calculus IV Homework 4

Mikhail Lavrov

due Friday, October 6, 2023

1. Find the circulation density and the flux density of each of the following vector fields:
(a) $\mathbf{F}=e^{x^{2}} \mathbf{i}-e^{y^{2}} \mathbf{j}$.
(b) $\mathbf{F}=\frac{\mathbf{i}-\mathbf{j}}{x+y}$.
(c) $\mathbf{F}=\left(x^{3}+y^{3}\right) \mathbf{i}-\left(x^{2} y+x y^{2}\right) \mathbf{j}$.
2. Let C be the triangular path from $(1,0,0)$ to $(0,1,0)$ to $(0,0,1)$ back to $(1,0,0)$ shown in the diagram below. Let C_{1}, C_{2}, and C_{3} be the three individual segments making up C.

Suppose that \mathbf{F} is a conservative vector field, and that you've already computed

$$
\int_{C_{1}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=\frac{1}{2}, \quad \int_{C_{2}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=\frac{1}{2}
$$

What must the value of $\int_{C_{3}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$ be?
3. For each part of this problem, come up with an example of a 2-dimensional vector field with the required properties.
(a) A nonzero vector field for which both the circulation density and the flux density are 0 .
(b) A vector field for which the circulation density and flux density are both a positive constant at every point.
(c) A conservative vector field for which the flux density at (x, y) is proportional to $x^{2}+y^{2}$.
4. Use Green's theorem to compute the counterclockwise circulation of $\mathbf{F}=e^{x^{2}} \mathbf{i}+\frac{4}{3} x^{3} y^{2} \mathbf{j}$ around the boundary of the square with vertices at $(\pm 1, \pm 1)$.
5. Let C be the curve made up of two segments with the parameterizations

$$
\begin{array}{ll}
\mathbf{r}_{1}(t)=(t,-2) & t \in[-2,2] \\
\mathbf{r}_{2}(t)=\left(-t, 2-t^{2}\right) & t \in[-2,2]
\end{array}
$$

and let $\mathbf{F}=x \mathbf{i}+x y \mathbf{j}$. Use Green's theorem to calculate the outward flux of \mathbf{F} across C.

