Calculus IV Homework 5

Mikhail Lavrov

due Friday, October 20, 2023

1. Let C be the curve parameterized by $\mathbf{r}(t)=(t(1-t)(1+t), t(1-t)(2-t))$ where $t \in[0,1]$. (Note that C is a closed curve: $\mathbf{r}(0)=\mathbf{r}(1)=(0,0)$.)

Use Green's theorem to find the area of the region bounded by C.
2. Let C_{1} be the curve parameterized by $\mathbf{r}(t)=\left(\cos ^{2} t, \sin t\right)$ where $t \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Let C_{2} be the line segment from $(0,1)$ to $(0,-1)$.
(a) Points (x, y) on curve C_{1} all lie on the graph of an equation $x=f(y)$ for some simple function f. What is that function?
(b) Use Green's theorem to find the flux of $\mathbf{F}=x y^{2} \mathbf{i}+\left(y-e^{x^{3}}\right) \mathbf{j}$ out of the region bounded between C_{1} and C_{2}.
(c) Use your answer to part (b) to find the left-to-right flux of $\mathbf{F}=x y^{2} \mathbf{i}+\left(y-e^{x^{3}}\right) \mathbf{j}$ across C_{1} only without having to take the flux integral over C_{1} directly.
3. Find parameterizations of the following surfaces:
(a) The rectangle with corners $(1,0,0),(1,0,1),(0,1,0)$, and $(0,1,1)$.
(b) The portion of the sphere $x^{2}+y^{2}+z^{2}=1$ with $x \geq 0$.
(c) The portion of the cone with equation $x^{2}+y^{2}=z^{2}$ bounded by $1 \leq z \leq 3$.
4. The cylinder with equation $x^{2}+y^{2}=1$ bounded by $0 \leq z \leq 1$ is parameterized by

$$
\mathbf{r}(u, v)=(\cos u, \sin u, v), \quad u \in[0,2 \pi], v \in[0,1] .
$$

Modify this parameterization in the following ways:
(a) Rotate the cylinder to be centered around the y-axis instead: the result should be the cylinder with equation $x^{2}+z^{2}=1$ bounded by $0 \leq y \leq 1$.
(b) Shift the cylinder by 1 unit in the y-direction: the result should be the cylinder with equation $x^{2}+(y-1)^{2}=1$ bounded by $0 \leq z \leq 1$.
(c) Make the cylinder 4 times wider and 2 times longer.
5. Use an integral to find the area of the surface parameterized by

$$
\mathbf{r}(u, v)=\left(u \cos v, u \sin v, u^{2}\right), \quad u \in[-1,1], v \in[0, \pi] .
$$

