Calculus IV Homework 6

Mikhail Lavrov

due Friday, November 3, 2023

1. Set up, but do not evaluate, each of the following surface area integrals.
(a) The surface area of the cylinder $x^{2}+z^{2}=4$ with $-3 \leq y \leq 3$. Use a parameterization.
(b) The surface area of the portion of the surface $z=x^{2}-y^{2}$ satisfying $0 \leq x \leq y \leq 1$. Use the formula for a surface given by $z=h(x, y)$.
(c) The surface area of the portion of the surface $x y z=1$ satisfying $1 \leq x \leq 2$ and $1 \leq y \leq 2$. Use the formula for a surface implicitly given by $f(x, y, z)=0$.
2. For each of the following shapes, describe their projections onto each of the $x y$-, $x z$-, and $y z$-planes, and specify which of these projections are one-to-one.
(example) The portion of the unit sphere $x^{2}+y^{2}+z^{2}=1$ satisfying $z \geq 0$.
The projection onto the $x y$-plane is a disk of radius 1, and this is a one-to-one projection. The projection onto the $x z$-plane is the top half of a disk of radius 1 , and this projection is not one-to-one. The projection onto the yz-plane is the same as the projection onto the $x z$-plane.
(a) The portion of the cone $x^{2}+y^{2}=z^{2}$ satisfying $0 \leq z \leq 1$.
(b) The portion of the cylinder $x^{2}+y^{2}=1$ satisfying $0 \leq z \leq 2$ and $y \geq 0$ (so the surface is only a half-cylinder).
(c) The portion of the surface $z=\sin y$ satisfying $-1 \leq x \leq 1$ and $-\pi \leq y \leq \pi$.
3. Evaluate the scalar surface integral

$$
\iint_{S}(y+z) \mathrm{d} \sigma
$$

where S is the surface parameterized by $\mathbf{r}(u, v)=\left(2 u v, u^{2}-v^{2}, u^{2}+v^{2}\right),(u, v) \in[0,5] \times[0,3]$.
4. Find the centroid of the portion of the sphere $x^{2}+y^{2}+z^{2}=1$ with $x \geq 0, y \geq 0$, and $z \geq 0$. (Assume uniform density.)
5. Let S be the surface in the shape of the parabolic bowl $z=x^{2}+y^{2}$ with $z \leq 1$. Find the flux of $\mathbf{F}=x \mathbf{i}+y \mathbf{j}$ across S in the downward direction.

