Calculus IV Homework 7

Mikhail Lavrov

due Friday, November 17, 2023

1. Find the curl of the following vector fields:
(a) $\mathbf{F}=\cos \left(e^{x}\right) \mathbf{i}+\sqrt{y^{3}+y^{6}+y^{7}} \mathbf{j}+z^{1+\tan ^{2} z} \mathbf{k}$.
(b) $\mathbf{F}=y z \mathbf{i}-2 x z \mathbf{j}+x y \mathbf{k}$.
(c) $\mathbf{F}=x y \cos z \mathbf{i}+x y \cos z \mathbf{j}+x y \cos z \mathbf{k}$.
2. Each part of this problem gives you a surface S with a parameterization. Use that surface parameterization to find four parameterizations $\mathbf{r}_{1}(t), \mathbf{r}_{2}(t), \mathbf{r}_{3}(t), \mathbf{r}_{4}(t)$ for the boundary of S. Then, list which (If any) of these boundaries cancel with each other, and which (if any) are trivial; briefly describe the remaining boundaries geometrically.
(example) The cylinder parameterized by $\mathbf{r}(u, v)=(\cos u, \sin u, v)$, where $(u, v) \in[0,2 \pi] \times[0,3]$.
Solution: the four parameterizations we get for the boundary are are

$$
\begin{array}{rlr}
\mathbf{r}_{1}(t)=\mathbf{r}(t, 0)=(\cos t, \sin t, 0) & t \in[0,2 \pi] \\
\mathbf{r}_{2}(t)=\mathbf{r}(2 \pi, t)=(1,0, t) & t \in[0,3] \\
\mathbf{r}_{3}(t)=\mathbf{r}(-t, 3)=(\cos t,-\sin t, 3) & t \in[-2 \pi, 0] \\
\mathbf{r}_{4}(t)=\mathbf{r}(0,-t)=(1,0,-t) & t \in[-3,0]
\end{array}
$$

Here, $\mathbf{r}_{1}(t)$ and $\mathbf{r}_{3}(t)$ are circles around the top and bottom edges of the cylinder, and $\mathbf{r}_{2}(t)$ and $\mathbf{r}_{4}(t)$ cancel with each other.
(a) The portion of the unit sphere with $x \geq 0, y \geq 0$, and $z \geq 0$, which is parameterized by $\mathbf{r}(u, v)=(\cos u \sin v, \sin u \sin v, \cos v)$, where $(u, v) \in[0, \pi / 2] \times[0, \pi / 2]$.
(b) The portion of the paraboloid $x=y^{2}+z^{2}$ with $0 \leq x \leq 1$, which is parameterized by $\mathbf{r}(u, v)=\left(u^{2}, u \cos v, u \sin v\right)$, where $(u, v) \in[0,1] \times[0,2 \pi]$.
3. Let S be the portion of the cone with equation $z^{2}=x^{2}+y^{2}$ which lies between the planes $z=1$ and $z=2$, oriented so that the normal vectors point inward and upward.
(a) Give S a parameterization of the form $\mathbf{r}(u, v)$, where $(u, v) \in[a, b] \times[c, d]$, making sure to be consistent with the orientation of S we want.
(b) As you did in problem 2, use this parameterization to find the boundaries of S.
(c) Let \mathbf{F} be the vector field $x y \mathbf{i}+z^{2} \mathbf{j}-(x-z) \mathbf{k}$. Stokes' theorem relates the curl integral of \mathbf{F} over S to the circulation integral of \mathbf{F} along the boundary of S. The surface in this problem has two boundaries which we can call C and C^{\prime}. This means that in this case, Stokes' theorem tells us that

Fill in the blanks, and describe C and C^{\prime} geometrically. You do not have to evaluate the integrals.
4. Let S be the rectangle in the plane $y+z=1$ which has corners at $(0,0,1),(1,0,1),(1,1,0)$, and $(0,1,0)$.
Find the curl integral of $\mathbf{F}=x y z \mathbf{i}-x z \mathbf{j}+y^{2} \mathbf{k}$ over S.
5. The cone $z^{2}=x^{2}+y^{2}$ and the plane $x=2 z-3$ intersect in an ellipse C which has parameterization $\mathbf{r}(t)=(1+2 \cos t, \sqrt{3} \sin t, 2+\cos t), t \in[0,2 \pi]$.
(a) Find the circulation of $\mathbf{F}=y \mathbf{i}-x \mathbf{j}$ around C (using the parameterization above). We covered circulation integrals much earlier this semester, but you should still remember how to do them!
(b) The portion of the cone above the $x y$-plane but below the plane $x=2 z-3$ is a surface with boundary C. One way to take a flux integral across this surface is to treat it as a surface defined by the implicit equation $x^{2}+y^{2}-z^{2}=0$ above a region R in the $x y$-plane. ${ }^{1}$

Write down a curl integral over S which is equal to the circulation of $\mathbf{F}=y \mathbf{i}-x \mathbf{j}$ around C, and transform it into a double integral over R with respect to x and y. You do not have to simply it further after that (and you should feel free to leave it in \iint_{R} form).

[^0]
[^0]: ${ }^{1}$ More precisely, R happens to be the interior of another ellipse: it is the region defined by $3(x-1)^{2}+4 y^{2} \leq 12$.

