# Calculus IV Homework 8 

Mikhail Lavrov

due Friday, December 1, 2023

## 0 Course evaluations

Course evaluations for this class can now be filled out!! There should be a link, I believe, from the D2L home page. (Let me know if you have trouble finding them.)

The last day that you can fill out your course evaluations is Monday, December $4^{\text {th }}$.
If more than $50 \%$ of the class fills out the course evaluation, then I will wear a funny hat for the final exam.

## 1 The divergence theorem

1. Find the outward flux of $\mathbf{F}=(x-2 y) \mathbf{i}-(3 z+4 x) \mathbf{j}+(5 y+6 z) \mathbf{k}$ across the surface of the cube of side length 2 in $\mathbb{R}^{3}$ given by the inequalities $|x| \leq 1,|y| \leq 1$, and $|z| \leq 1$.
2. Let $S_{1}$ be the portion of the unit sphere with $z \geq 0$, oriented with normal vector pointing up and out of the sphere.

Let $S_{2}$ be the portion of the unit sphere with $z \leq 0$, oriented with normal vector pointing up and into the sphere.

Finally, let $\mathbf{F}=2 y \mathbf{i}+2 z \mathbf{j}+2 x \mathbf{k}$.
(a) Find a vector field $\mathbf{G}$ such that the curl $\boldsymbol{\nabla} \times \mathbf{G}$ is equal to $\mathbf{F}$. (There are infinitely many possibilities, but I've set the problem up so that some are particularly easy to find.)
(b) Use Stokes' theorem to explain why the flux integral of $\mathbf{F}$ across $S_{1}$ is equal to the flux integral of $\mathbf{F}$ across $S_{2}$.
(c) Use the divergence theorem to explain why the flux integral of $\mathbf{F}$ across $S_{1}$ is equal to the flux integral of $\mathbf{F}$ across $S_{2}$.
3. Let $D$ be the cone of height 1 above the unit circle in the $x y$-plane: the cone described by

$$
\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2} \leq 1 \text { and } 0 \leq z \leq 1-\sqrt{x^{2}+y^{2}} .\right\}
$$

Let $\mathbf{F}=(x+y)^{2} \mathbf{i}+z^{2} \mathbf{k}$.
(a) The cone $D$ has two boundaries: a flat disk in the $x y$-plane, and a lateral boundary that lies on the graph of $z=1-\sqrt{x^{2}+y^{2}}$.

Explain why the (outward) flux integral of $\mathbf{F}$ across the boundary in the $x y$-plane is 0 .
(b) Use the divergence theorem to find the outward flux integral of $\mathbf{F}$ across the lateral boundary of the cone.

## 2 Review

4. Let $R=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+2 x y+2 y^{2} \leq 1\right\}$. Let $S$ be the surface in $\mathbb{R}^{3}$ that we get by thinking of $R$ as a surface in the plane $z=0$, oriented with normal vector pointing upward.
(a) If $\mathbf{F}=x^{2} \mathbf{k}$, explain why the following two quantities are equal:

$$
\iint_{R} x^{2} \mathrm{~d} A=\iint_{S} \mathbf{F} \cdot \mathbf{n} \mathrm{~d} S .
$$

(b) Evaluate $\iint_{R} x^{2} \mathrm{~d} A$ by making the $u v$-substitution $x=u \cos v-u \sin v$ and $y=u \sin v$.
(c) Evaluate $\iint_{S} \mathbf{F} \cdot \mathbf{n} \mathrm{~d} S$ by giving $S$ the parameterization

$$
\mathbf{r}(u, v)=(u \cos v-u \sin v, u \sin v, 0), \quad(u, v) \in[0,1] \times[0,2 \pi] .
$$

5. Parameterize the following objects:
(a) The parallelogram with corners at $(0,0,0),(0,1,1),(2,2,1)$, and $(2,1,0)$.
(Find a paramerization with rectangular domain $(u, v) \in[a, b] \times[c, d]$.)
(b) A "washer" shape in the plane $y=1$ bounded by the inequalities $1 \leq x^{2}+z^{2} \leq 4$.
(Find a paramerization with rectangular domain $(u, v) \in[a, b] \times[c, d]$.)
(c) The curve where the cylinder $x^{2}+y^{2}=1$ intersects the plane $x+y+z=1$.
(This is a curve, so find a parameterization with one variable $t \in[a, b]$.)
