Graph Theory Homework 2

Mikhail Lavrov

due Friday, September 8, 2023

1 Short answer

1. Define Q_{n}, as in class, to be the graph with vertex set $\{0,1\}^{n}$ and an edge between any two vertices that differ in one position. Let G_{n} be the subgraph of Q_{n} induced by the vertices in which the total number of 1 's is either one or two.
(a) Draw a diagram of G_{4}. (It has 10 vertices: $0001,0010,0100,1000$ with one 1 , and $0011,0101,0110,1001,1010,1100$ with two 1 s .)
(b) Determine the degree sequence of G_{n} (in general, as a function of n). Explain which vertices have which degrees.
2. Suppose that H is a bipartite graph. On one side of the bipartition, there are n vertices; their degrees are $1,2,3, \ldots, n$. On the other side of the bipartition, there are also n vertices; all of them have degree 4 . What is n ?
3. What is the maximum number of edges in an 8 -vertex graph with minimum degree 2 and maximum degree 3 ?

Give an example of a graph with this number of edges, and a brief explanation for why that number cannot be larger.

2 Proof

4. The crown graph on $2 n$ vertices is defined to be the following bipartite graph: it has vertices $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ on one side, vertices $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ on the other side, and an edge $x_{i} y_{j}$ whenever $i \neq j$.

Prove that, for all $n \geq 3$, this graph is connected and has diameter 3 .
You have already written a rough draft of the solution; now, write a final draft.
5. Prove the following by induction on n. For all $n \geq 5$, there exists a graph with n vertices and $2 n-4$ edges that has minimum degree 2 and maximum degree 4 .
(If you're having trouble, begin by omitting the "maximum degree 4" condition; then, see if you can find a way to modify your proof to include it.)

Write a rough draft of the solution. I will give you feedback, and you will write a final draft of your proof as part of Homework 3.

