Graph Theory Homework 3

Mikhail Lavrov

due Friday, September 22, 2023

1 Short answer

1. Using the Havel-Hakimi algorithm or otherwise, determine which of the sequences below are graphic sequences. For the ones that are graphic, find a graph with that degree sequence.
(a) $7,3,3,3,3,3,3,3$.
(b) $6,5,4,4,3,1,1$.
(c) $5,5,3,3,2,2,2$.
2. Find two different isomorphisms between the two graphs below:

3. Suppose that an n-vertex tree has 4 vertices of degree 3 and $n-4$ vertices of degree 1 .
(a) Determine the value of n, and give an example of such a tree.
(b) Find a second example not isomorphic to the first; explain why they are not isomorphic.

2 Proof

4. Prove the following by induction on n. For all $n \geq 5$, there exists a graph with n vertices and $2 n-4$ edges that has minimum degree 2 and maximum degree 4 .

You have already written a rough draft of the solution; now, write a final draft.
5. Let G be a connected graph with n vertices and exactly one cycle. (That is, exactly one cycle if we don't count starting at a different vertex or going in a different direction.) Prove that G has n edges.

Write a rough draft of the solution. I will give you feedback, and you will write a final draft of your proof as part of Homework 4.

