Graph Theory Homework 5

Mikhail Lavrov

due Friday, October 20, 2023

1 Short answer

Important note: even after we cover multigraphs and directed graphs in this class, it is still the case that when I say "graph", I mean an undirected graph with no loops or parallel edges. If I want to ask about directed graphs or multigraphs, I will specify.

1. Let J_{10} be the graph below on the left. (Irrelevant trivia: this is the skeleton graph of the $10^{\text {th }}$ Johnson solid, the gyroelongated square pyramid.) Find a vertex v in J_{10} such that deleting it produces an 8 -vertex Eulerian graph.

2. In the directed graph shown above on the right, find an arc (u, v) such that if it is reversed (deleted and replaced by (v, u)), the result is acyclic. Give a topological ordering of the resulting directed graph after (u, v) is reversed.

If the picture is unclear, the set of arcs is $\{(a, b),(a, d),(a, h),(b, c),(b, f),(b, g),(c, f),(d, c)$, $(d, e),(d, h),(e, a),(e, f),(g, c),(g, f),(h, e),(h, g)\}$.
(Hint: if you're not sure how to get started, try looking for cycles, or try finding the strongly connected components.)
3. In each of the graphs below, either find a Hamiltonian cycle, or say why it is not Hamiltonian.

2 Proof

4. Using Prüfer codes or in some other way, determine the number of trees with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ which have exactly $n-2$ leaves.

You have already written a rough draft of the solution; now, write a final draft.
5. Let G be a bipartite graph, with bipartition (A, B), that has the following properties:

- Every vertex on side A has degree 3 or 5;
- Every vertex on side B has degree 2 or 4;
- There are no edges between vertices of degree 3 and vertices of degree 4 .

Prove that G has a matching that covers all vertices in A.
Write a rough draft of the solution. I will give you feedback, and you will write a final draft of your proof as part of Homework 6.

