
Math 3324: Enumerative Combinatorics1 Mikhail Lavrov

Lecture 20: Catalan Numbers

March 28, 2024 Kennesaw State University

1 A tiling example

Before we go on to Catalan numbers, the topic of today’s lecture, let’s solve a tiling problem using
the idea of convolutions.

Suppose that you are laying out tiles in a long line of height 1 (just as in our Fibonacci tiling
problem). This time, however, you have three tiles available to you:

That is, we have a single 1 × 1 tile available to use, but two different 1 × 2 tiles with different
patterns, and it matters which 1 × 2 tile we use. Let’s find the generating function where the
coefficient of xn is the number of ways to tile a 1× n rectangle with these tiles.

The main difference from the problems we looked at in the previous lecture is that we are not
combining a fixed number of tiles: we have any number of tiles to use. This will involve a new step
in our solution, so let’s wait to figure out what it is and ask a simpler question. Suppose I tell you
that I want to use exactly 5 tiles in total. What is the generating function now?

To solve this, we begin with the generating function for a single tile: x+ 2x2. Here, the coefficient
of x is 1 because there is 1 way to tile a 1× 1 rectangle with a single tile: use the square tile. The
coefficient of x2 is 2 because there are 2 ways to tile a 1× 2 rectangle with a single tile: we can use
either of the long tiles.

To obtain all the possible ways to combine 5 tiles, we can take the 5th power of this generating
function:

(x+ 2x2)5 = x5 + 10x6 + 40x7 + 80x8 + 80x9 + 32x10.

This tells us that, for example, there are 10 ways to tile a 1×6 rectangle with 5 of our tiles. (What
are those 10 ways? This case is not hard to check by hand.)

Now let’s return to the original question: suppose we want to tile a 1× n rectangle, and we don’t
care about the number of tiles. What do we do now?

As a general pattern in enumerative combinatorics, you should begin to develop a reflex: whenever
you see “we don’t care about the value of k”, you should think “sum over all possible values of k”.
This is how we combine many cases. So if we don’t care about the number of tiles, we should sum
over all the possible numbers of tiles we can use.

If we use k tiles, the generating function we get is (x + 2x2)k, generalizing our previous solution.
The value of k can be any nonnegative integer: we’ll allow k = 0 because it will make our sum look

1This document comes from the Math 3324 course webpage: http://facultyweb.kennesaw.edu/mlavrov/

courses/3324-spring-2024.php

1

http://facultyweb.kennesaw.edu/mlavrov/courses/3324-spring-2024.php
http://facultyweb.kennesaw.edu/mlavrov/courses/3324-spring-2024.php

nicer without affecting things much. (With 0 tiles, we can only tile a 1× 0 “rectangle”.) This gives
us a final answer of

∞∑
k=0

(x+ 2x2)k =
1

1− x− 2x2

where, in the final step, we used the formula for an infinite geometric series that starts at 1 and
has common ratio x+ 2x2.

We can get a closed form for this sequence in the same way that we got a closed form for the
Fibonacci numbers. Begin with a partial fraction decomposition:

1

1− x− 2x2
=

1/3

1 + x
+

2/3

1− 2x
.

Now, we can use the formula for an infinite geometric series in reverse on each term:

1

1− x− 2x2
=

1

3

∞∑
k=0

(−x)k +
2

3

∞∑
k=0

(2x)k =

∞∑
k=0

(−1)k + 2 · 2k

3
· xk.

Altogether, there are (2k+1 + (−1)k)/3 ways to tile a 1× n rectangle with our tiles!

2 The Catalan numbers

2.1 Combinatorial interpretations

Take a look at the following problems:

Problem 1. We have a regular n-gon, and we want to triangulate it: to draw in some of its
diagonals and divide it up into n− 2 triangles. How many ways are there to do this? Here are the
solutions for n = 5:

Problem 2. We want to write a sequence of n opening and n closing parentheses that match up
into pairs; for example, “())(” is not valid, because the second “)” does not close a “(”. Here are
the solutions for n = 3:

()()() ()(()) (())() (()()) ((()))

Problem 3. We want to draw a “full binary tree” with n leaves. It will have n− 1 non-leaf nodes,
and each of those should have a left child and a right child. Here are the solutions for n = 4 (with
leaves shaded in for clarity):

2

Problem 4. We want to draw a path from in an n× n grid that starts at the bottom left corner,
ends at the top right corner, and moves up or to the right at each step. We’ve solved this problem
before, but now we add an extra condition: we must never go below the bottom-left-to-top-right
diagonal. Here are the solutions for n = 3:

All four problems have the same number of solutions! (Up to a shift in indices: for example, as seen
above, triangulations of a 5-sided polygon in Problem 1 correspond to sequences with 3 pairs of
parentheses in Problem 2, trees with 4 leaves in Problem 3, and paths in a 3×3 grid in Problem 4.)
That number of solutions is given by the Catalan sequence C0, C1, C2, The convention for which
Catalan number is the nth Catalan number matches the description in Problem 2 or Problem 4.
With this convention, the sequence begins:

C0 = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14, C5 = 42, C6 = 132, . . .

2.2 Obtaining the generating function

To find a generating function and eventually a formula for the Catalan numbers, let’s look at
Problem 3, where we want Cn to be the number of full binary trees with n+1 leaves and n non-leaf
nodes. I’ve chosen this problem because it’s the one in which an important feature of the Catalan
numbers becomes the most obvious: we solve the size-n problem by putting together solutions to
two smaller problems. In Problem 3, this means we put together two smaller full binary trees by
suspending both of them from a common root. See if you can identify this breakdown into two
smaller problems in Problems 1, 2, and 4.

Our big tree has n non-leaf nodes. What can we say about the left subtree and the right subtree?
Each of them has between 0 and n − 1 non-leaf nodes, and together, they have n − 1 non-leaf
nodes in total: the nth non-leaf node is always the root of the big tree, which is not part of either
subtree. Let k be the number of non-leaf nodes in the left subtree—so that n−k− 1 is the number
of non-leaf nodes in the right subtree. Then we can combine Ck possible left subtrees and Cn−k−1

possible right subtrees to get our big tree. This can be done in CkCn−k−1 ways, and we want to
sum over all possible values of k, giving us the following recurrence relation:

Cn =
n−1∑
k=0

CkCn−k−1 = C0Cn−1 + C1Cn−2 + C2Cn−3 + · · ·+ Cn−2C1 + Cn−1C0.

We can check that the first few terms of the sequence, written above, satisfy this recurrence relation.
For example,

42 = 1 · 14 + 1 · 5 + 2 · 2 + 5 · 1 + 14 · 1.

What does this recurrence relation look like? It’s a convolution. . . of the Catalan numbers with
themselves! To state this formally, let’s define a generating function:

C(x) = C0 + C1x+ C2x2 + C3x
3 + C4x

4 + . . . = 1 + x+ 2x2 + 5x3 + 14x4 + . . .

3

To get a convolution of the Catalan sequence with itself, we want to square this generating function.
In C(x)2, we obtain an xn term whenever we multiply Ckx

k from the first factor by Cn−kx
n−k from

the second factor, for any value of k. As a result, in C(x)2, the coefficient of xn is

C0Cn + C1Cn−1C2Cn−2 + · · ·+ Cn−1C1 + CnC0 =
n∑

k=0

CkCn−k.

Our recurrence relation says that this should be equal to Cn+1. Therefore

C(x)2 =
∞∑
n=0

Cn+1x
n.

This sum is a left shift of C(x): it is equal to C(x)−C0

x , or C(x)−1
x . Therefore

C(x)2 =
C(x)− 1)

x
⇐⇒ xC(x)2 = C(x)− 1.

We are almost ready to write down a generating function. To do so, we need to solve for C(x).
Unlike every other example we’ve done, though, this example is a quadratic equation for C(x). To
solve it, we’ll need to use the quadratic formula on the equation xC(x)2 − C(x) + 1 = 0. With
a = x, b = −1, and c = 1, we get

C(x) =
1±

√
1− 4x

2x
.

The ± is a bit of a concern: shouldn’t we just have one generating function? Yes, we should—and
the only valid operation to put there is minus (−). This is not immediately obvious! It will be
easier to see after we do some more work to figure out how to write C(x) as a power series, and
extract a formula for Cn.

2.3 A formula for the Catalan numbers

We can start by looking at
√
1− 4x. This is (1− 4x)1/2, and we can use the binomial theorem to

write down the following series for it:

∞∑
n=0

(
1/2

n

)
(−4x)n = 1 +

(
1/2

1

)
(−4x)1 +

(
1/2

2

)
(−4x)2 +

(
1/2

3

)
(−4x)3 +

(
1/2

4

)
(−4x)4 + . . .

Is this okay? It is, with the proper interpretation of
(
1/2
n

)
.

The formula
(
n
k

)
= (n)k

k! is something we originally intended for integer inputs. But we can use it

for evaluating something like
(
1/2
4

)
as well:(

1/2

4

)
=

(1/2)4
4!

=
(12)(−

1
2)(−

3
2)(−

5
2)

4!
=

15/16

24
=

5

128
.

It’s a bit harder to describe what will happen for
(
1/2
n

)
in general. The same reasoning tells us(

1/2

n

)
=

(1/2)n
n!

=
(12)(−

1
2)(−

3
2) · · · (−

2n−3
2)

n!
= (−1)n−1 1 · 3 · 5 · · · (2n− 3)

2n · n!
.

4

We’re fine with n! in a formula; we’d rather not deal with the product of odd numbers as well. To
handle it, let’s multiply and divide by 2 · 4 · 6 · · · (2n− 2), which is 2n−1(n− 1)!:(

1/2

n

)
= (−1)n−1 1 · 3 · 5 · · · (2n− 3)

2n · n!
· 2 · 4 · 6 · · · (2n− 2)

2n−1 · (n− 1)!
= (−1)n−1 (2n− 2)!

22n−1 · n! · (n− 1)!
.

(This is only valid for n ≥ 1; we can’t make sense of (2n− 2)! when n = 0. But for n = 0, we know
that

(
1/2
n

)
must be 1, because

(
x
0

)
= 1 for any x.)

As a result, we get

√
1− 4x =

∞∑
n=0

(
1/2

n

)
(−4x)n = 1 +

∞∑
n=1

(−1)n−1 (2n− 2)!

22n−1 · n! · (n− 1)!
(−4x)n.

This is as bad as the expression will get: now, a lot of things cancel. The (−1)n−1 and (−4)n turn
into −4n, and when we divide by 22n−1, we’re left with just −2. Therefore

√
1− 4x = 1 +

∞∑
n=1

−2(2n− 2)!

n!(n− 1)!
xn = 1− 2 · 0!

1! 0!
x− 2 · 2!

2! 1!
x2 − 2 · 4!

3! 2!
x3 − 2 · 6!

4! 3!
x4 −

Looking at this, we can see why we should consider 1−
√
1− 4x in our sum, and not 1 +

√
1− 4x.

That’s the option that will give us positive terms in our generating function! It will also give us
a 0 constant term, which is important for our final step of dividing by 2x. When we do so, we’ll
get

C(x) =
1−

√
1− 4x

2x
=

2 · 0!
1! 0!

x+
2 · 2!
2! 1!

x2 +
2 · 4!
3! 2!

x3 +
2 · 6!
4! 3!

x4 + . . .

2x

=
0!

1! 0!
+

2!

2! 1!
x+

4!

3! 2!
x2 +

6!

4! 3!
x3 +

8!

5! 4!
x4 + . . .

To find a formula for Cn, we take the coefficient of xn, which we see is (2n)!
(n+1)!n! . There’s a more

intuitive way to write this: Cn is very nearly a binomial coefficient, except that n+ 1 and n don’t
quite add up to 2n. We can fix this by factoring out a 1

n+1 to change (n+1)! to n!, or by multiplying

by 2n+1
2n+1 to change (2n)! to (2n + 1)!. These give us, respectively, the following two formulas for

the Catalan numbers:

Cn =
1

n+ 1

(
2n

n

)
=

1

2n+ 1

(
2n+ 1

n

)
.

The first formula is particularly interesting when we connect it to the Problem 4, which counts
paths in an n×n grid. Earlier in the semester, we found that the total number of paths from (0, 0)
to (n, n) in this grid is

(
2n
n

)
; meanwhile, Cn is the number of paths that always stay above the main

diagonal. The formula Cn = 1
n+1

(
2n
n

)
tells us that this is 1

n+1 of the total number of paths.

5

3 Practice problems

These are optional, but if you’d like to think about the Catalan numbers (and the techniques we
used in class) some more, here are some things you could think about.

1. We used Problem 3 to justify the recurrence for Catalan numbers. Explain why the number
of solutions to Problems 1, 2, and 4 should also satisfy this recurrence.

2. Another way to prove that Problem 1, Problem 2, Problem 3, and Problem 4 all give us
the Catalan numbers is by finding a bijection. Try finding some bijections between these
problems! A good one to start with is to find a bijection between Problem 2 and Problem
4: a bijection that turns sequences of n opening and n closing parentheses into paths in the
n× n grid that never go below the diagonal.

3. Prove that the following formula is also correct for the Catalan numbers: Cn =
(
2n
n

)
−
(

2n
n+1

)
.

4. In this lecture, we used the binomial theorem to expand
√
1− 4x, interpreting it as (1−4x)1/2.

Something similar can be done to make sense of our generating function for counting multisets!
Give a second proof of the expansion

1

(1− x)n
=

∞∑
k=0

((
n

k

))
xk =

((
n

0

))
x0 +

((
n

1

))
x1 +

((
n

2

))
x2 +

((
n

3

))
x3 + . . .

by using the binomial theorem.

5. If we define (−1
2)! to be

√
π, give a formula for (n+ 1

2)! in terms of n.

6. Suppose I have n pairs of () parentheses and also n pairs of [] brackets. I would like to
assemble them together into a sequence of length 4n that makes sense: each) closes a (and
each] closes a [. For example, (([])[[()]]) would be a valid solution for n = 3.

Find the number of ways to do this.

7. Consider a random walk on the number line: we start at 0, and at every time step, we go
either left or right (adding −1 or +1) with equal probability.

(a) What is the probability that at time 2n, we return to 0 for the first time? (I am writing
2n and not n because it’s impossible to return to 0 on an odd time step.)

(b) Now suppose that our random walk is biased: it goes right (adding +1) with probability
2
3 and left (adding −1) with probability 1

3 .

How does the answer to (a) change?

(c) If the answer to (a) or to (b) is summed over all n ≥ 1, it gives us the probability that
the random walk ever returns to 0.

Find that probability—for both cases—by interpreting the infinite sum you get in terms
of evaluating the generating function C(x) at a specific value of x.

6

	A tiling example
	The Catalan numbers
	Combinatorial interpretations
	Obtaining the generating function
	A formula for the Catalan numbers

	Practice problems

