Enumerative Combinatorics Homework 1

Mikhail Lavrov
due Friday, January 12, 2024

1 Instructions

In the first lecture, we discussed the following counting problems:

- n^{k}, the number of k-element sequences of elements of $[n]$.
- $(n)_{k}$, the number of k-element sequence of elements of $[n]$ with no repetitions.
- n !, the special case $(n)_{n}$, which is the number of permutations of $[n]$.
- $\binom{n}{k}$, the number of sets of size k with elements from $[n]$.
- $\binom{n}{k}$) , the number of multisets of size k with elements from $[n]$.

Solve each of the word problems below using the appropriate expression. You do not need to simplify to a number.

Example: The number of 6-character passwords whose characters can be uppercase letters, lowercase letters, or numbers.

Solution: 62^{6}.

2 Problems

1. The number of distinguishable ways to fill an M\&M bag with $100 \mathrm{M} \& \mathrm{M}$'s of 6 different colors (brown, yellow, green, red, orange, and blue).
2. The number of ways to choose the $1^{\text {st }}, 2^{\text {nd }}$, and $3^{\text {rd }}$ place winner in a competition with 50 participants.
3. The number of ways to split a 13 -student class into two teams: one with 6 students and one with 7 students.
4. The number of anagrams of the word "thousand" (for example, "adhnostu" or "dantuohs").
5. The number of possible 280 -character tweets consisting entirely of digits $0-9$.
