Enumerative Combinatorics Homework 5

Mikhail Lavrov

due Friday, March 8, 2024

1. Three pairs of siblings with the uncreative names $A_{1}, A_{2}, B_{1}, B_{2}, C_{1}, C_{2}$ want to sit in a row for a group photo. However, nobody wants to sit next to their sibling. Obviously. How many valid orders does that leave us with?
(For example, $\left(A_{1}, B_{1}, C_{1}, A_{2}, B_{2}, C_{2}\right)$ is a valid order, but ($A_{1}, B_{1}, B_{2}, C_{1}, A_{2}, C_{2}$) is not.)
2. In 11-dimensional $4 \times 4 \times 4$ tic-tac-toe, you win if you claim 4 cells that lie on a line. How many winning lines are there?
...There's a neat geometric solution to this problem, and if you have good intuition for 11 -dimensional geometry, you can solve it from there. If you want a more combinatorial approach, you can think of winning lines in 11-dimensional tic-tac-toe as follows. These lines are given by taking an equation like

$$
\ell(t)=(1,4,1, t, t, 2,3,5-t, t, 1,5-t)
$$

and plugging in $t=1,2,3,4$. The equation must have 11 components. Each component can be one of $1,2,3,4, t$, or $5-t$. Either t or $5-t$ must appear at least once. Finally, if we swap all t 's for $5-t$'s and vice versa, we get the same line, just parameterized in reverse.
3. The golden ratio is a fancy name for the number $\varphi=\frac{1+\sqrt{5}}{2} \approx 1.618 \ldots$. Its claim to fame is the identity $\varphi^{2}=\varphi+1$, which is something we'll find some use for in the near future.
Write a proof by induction for the identity $\binom{n}{k} \leq \varphi^{n+k}$.
4. A sequence $\left(a_{n}\right)_{n=0}^{\infty}$ is defined by $a_{0}=\frac{2}{3}$ and $a_{n}=2^{n}-a_{n-1}$.

Find the first few terms of the sequence, guess a formula, and prove it by induction.
5. In this problem, let $\exp (x)$ denote e^{x} (where $e \approx 2.178 \ldots$ is Euler's number) and let $\lceil x\rceil$ be the ceiling of x : the smallest integer greater than or equal to x. (For example, $\lceil e\rceil=3$.)
Consider the formula $f(n)=\left\lceil\exp \left(\frac{n}{2}-1\right)\right\rceil$. If we plug in $n=1,2,3,4,5,6,7$ then we get $f(n)=1,1,2,3,5,8,13$ which should begin to look somewhat familiar after the appropriate lecture.

Is it true that $f(n)$ gives the $n^{\text {th }}$ Fibonacci number for all n ? I don't need a formal proof as the answer, but you should explain why it's true or false.

