Enumerative Combinatorics Homework 6

Mikhail Lavrov

due Friday, March 29, 2024

1. The Fibonacci sequence satisfies the identity $\sum_{k=0}^{n} F_{k}=F_{n+2}-1$. (For example, if we take $n=5$, then the sum $F_{0}+F_{1}+F_{2}+F_{3}+F_{4}+F_{5}$ is $0+1+1+2+3+5=12$, which is equal to $F_{7}-1$ or $13-1$.)

Prove this identity by induction on n. (We might see other ways to prove this identity in class; I haven't decided yet.)
2. For $n \geq 1$, let t_{n} be the number of n-bit sequences (that is, sequences of $n 0$'s and 1 's) that do not have three of the same symbol in a row. (For example, $t_{3}=6$, counting the sequences $001,010,011,100,101$, and 110; the sequences 000 and 111 are not counted.)

What is the relationship between this sequence and the sequence of Fibonacci numbers? Either give a combinatorial argument for the relationship, or prove it by induction.
3. Let $A(x)$ be the OGF for a sequence $a_{0}, a_{1}, a_{2}, \ldots$ beginning with $a_{0}=0$ and $a_{1}=1$.
(a) Find the generating function $B(x)$ for the sequence $b_{0}, b_{1}, b_{2}, \ldots$ satisfying $b_{n}=2^{n}-a_{n-2}$; express your answer in terms of $A(x)$.
(b) Suppose that a_{n} satisfies the recurrence relation $a_{n}=2^{n}-a_{n-2}$. Use this information, and your work in part (a), to solve for $A(x)$.
4. In each part, find the first 10 terms of the sequence with the given generating function:
(a) $(2+x)^{3}$.
(b) $\frac{3}{1-4 x^{3}}$.
(c) $\frac{2}{1-2 x}-\frac{1}{1+2 x}+2 x$.
(d) $\frac{1}{(1-2 x)^{2}}$.
5. A magic missile is a glowing dart of magical force that unerringly strikes your enemy for $2,3,4$, or 5 damage. Find generating functions in which the coefficient of x^{n} is the number of ways in which you can deal a total of n damage:
(a) With just one magic missile.
(b) With three magic missiles, launched one after the other. (Order matters. For example, you can deal 7 damage in 3 ways, by dealing $2+2+3,2+3+2$, or $3+2+2$ damage.)
(c) With any number of magic missiles, launched one after the other.

