Probability Theory Homework 5

Mikhail Lavrov

due Friday, March 22, 2024

1. You take a 20 -question multiple choice exam on which every correct answer is worth 1 point, and every incorrect answer is worth $-\frac{1}{4}$ points to discourage guessing. Each question has five options: (A) through (E). On each question, you are able to eliminate one of the options as certainly wrong (leaving four), and then guess randomly between the other four options.
(a) Let \mathbf{X} be the number of correct answers you give. What distribution does \mathbf{X} have (one of the named distributions we covered), and what are its parameters?
(b) Express the number of points you receive as a linear transformation $a \mathbf{X}+b$ of \mathbf{X}, the random variable from part (a).
(c) Find the probability that you get exactly 12.5 points.
2. A fair 12 -sided die is rolled; let \mathbf{D} be the number that comes up. Let $\mathbf{D} \bmod 5$ denote the remainder when \mathbf{D} is divided by 5 . (For example, if $\mathbf{D}=5$, then $\mathbf{D} \bmod 5=0$, and if $\mathbf{D}=8$, then $\mathbf{D} \bmod 5=3$.) Find the expected value $\mathbb{E}[\mathbf{D} \bmod 5]$.
3. Find the variance of a fair six-sided die whose sides are labeled $1,2,2,3,3,3$.
4. For the sake of consistency, let's keep the same six-sided die with sides labeled $1,2,2,3,3,3$, but the questions we ask about it here will be unrelated to the previous problem.

We roll this six-sided die three times. Let \mathbf{X} be the number of times the die lands 1 ; let \mathbf{Y} be the number of times the die lands 2 ; let \mathbf{Z} be the number of times the die lands 3 .
(a) Although there's three variables, it's enough to study the joint distribution of \mathbf{X} and \mathbf{Y}, because \mathbf{Z} is a function of \mathbf{X} and \mathbf{Y}. What function? That is, what is \mathbf{Z} in terms of \mathbf{X} and \mathbf{Y} ?
(b) In the form of a 4×4 table, write down $P_{\mathbf{X Y}}(a, b)$, the joint PMF of \mathbf{X} and \mathbf{Y}.
(c) In the form of a 4×4 table, write down $P_{\mathbf{X} \mid \mathbf{Y}}(a \mid b)$, the joint PMF of \mathbf{X} given \mathbf{Y}.
(d) Explain what the $\mathbf{X}=1, \mathbf{Y}=1$ entry of your table in (c) means in terms of our die-rolling experiment and the faces that come up.
5. (a) Find the conditional PMF of $(\mathbf{W} \mid 2 \leq \mathbf{W} \leq 6)$, where $\mathbf{W} \sim \operatorname{Geometric}\left(p=\frac{1}{2}\right)$.
(b) Find the expected value $\mathbb{E}[\mathbf{W} \mid 2 \leq \mathbf{W} \leq 6]$.
6. At the Skittles factory, a bag of Skittles is filled by a mechanical scoop. The scoop picks up $9,10,11$, or 12 Skittles (with equal probability of each number) and pours them into the bag; this is repeated a total of 5 times, resulting in a bag which contains between 45 and 60 Skittles.
(a) Find $\operatorname{Var}[\mathbf{S}]$, where \mathbf{S} is the number of Skittles scooped up by the scoop.
(b) Find $\operatorname{Var}[\mathbf{B}]$, where \mathbf{B} is the total number of Skittles in the bag.

