Probability Theory Homework 6

Mikhail Lavrov

due Friday, April 5, 2024

1. Let \mathbf{X} and \mathbf{Y} be independent random variables with the distributions $\mathbf{X} \sim \operatorname{Geometric}\left(p=\frac{1}{3}\right)$ and $\mathbf{Y} \sim \operatorname{Geometric}\left(p=\frac{2}{3}\right)$. Find $\operatorname{Pr}[\mathbf{X}=\mathbf{Y}]$.
2. A fair die is rolled whose six sides are labeled $1,2,2,3,3,3$. Let \mathbf{D} be the number that comes up.
(a) Find the z-transform $\widehat{\mathbf{D}}(z)$, defined to be $\mathbb{E}\left[z^{\mathbf{D}}\right]$.
(b) Let $\mathbf{D}_{1}, \mathbf{D}_{2}, \mathbf{D}_{3}, \mathbf{D}_{4}$ be four independent copies of \mathbf{D} (that is, the results of four rolls of the die), and let $\mathbf{S}=\mathbf{D}_{1}+\mathbf{D}_{2}+\mathbf{D}_{3}+\mathbf{D}_{4}$. Find the z-transform $\widehat{\mathbf{S}}(z)$. (Don't expand.)
(c) Wolfram Alpha told me that when you expand the answer to (b), you should get

$$
\frac{z^{4}}{1296}+\frac{z^{5}}{162}+\frac{z^{6}}{36}+\frac{13 z^{7}}{162}+\frac{107 z^{8}}{648}+\frac{13 z^{9}}{54}+\frac{z^{10}}{4}+\frac{z^{11}}{6}+\frac{z^{12}}{16}
$$

Using this information, what is $\operatorname{Pr}[\mathbf{S} \geq 10]$?
3. Let $\mathbf{T} \sim \operatorname{Pascal}\left(m=30, p=\frac{1}{2}\right)$. For example, \mathbf{T} could be measuring the number of coin tosses required to see 30 heads.

Use an inequality covered in class to put an upper bound on the probability $\operatorname{Pr}[\mathbf{T} \geq 100]$. If you want to, you can try several approaches; for each additional (and sufficiently different) method you use, I will give a point of extra credit.
4. For each of the random variables below, plot the CDF.
(a) A random real number chosen uniformly from the interval $[-2,2]$.
(b) A discrete random variable equal to -1 with probability $\frac{2}{3}$ and to 1 with probability $\frac{1}{3}$.
(c) A random real number chosen uniformly from the set $[-2,-1] \cup[1,2]$: the union of two intervals with a gap between them.

