Probability Theory Homework 7

Mikhail Lavrov

due Friday, April 19, 2024

1. A random variable \mathbf{A} has the probability density function

$$
f_{\mathbf{A}}(t)= \begin{cases}c \cdot(2-t) & 0 \leq t \leq 2 \\ c \cdot(t-3) & 3 \leq t \leq 4 \\ 0 & \text { otherwise }\end{cases}
$$

for some constant c.
(a) Find the value of c that makes $f_{\mathbf{A}}(t)$ a valid PDF.
(b) Find the cumulative distribution function of \mathbf{A}.
(c) Find $\operatorname{Pr}[1 \leq \mathbf{A} \leq 3]$.
2. Let $\mathbf{X} \sim \operatorname{Exponential}\left(\lambda=\frac{1}{2}\right)$, let $\mathbf{Y} \sim \operatorname{Uniform}(a=1, b=3)$, and let \mathbf{Z} be the random variable with PDF

$$
f_{\mathbf{Z}}(t)= \begin{cases}2 / t^{3} & t \geq 1 \\ 0 & t<1\end{cases}
$$

These have something in common: $\mathbb{E}[\mathbf{X}]=\mathbb{E}[\mathbf{Y}]=\mathbb{E}[\mathbf{Z}]=2$. For each random variable, find the probability that it's less than this expected value.
3. Find the variance of each random variable in question 2.
4. If $\boldsymbol{\Theta} \sim \operatorname{Uniform}(a=0, b=3)$, find the probability density function of $\sin (\boldsymbol{\Theta})$.
5. Let $\mathbf{W} \sim \operatorname{Normal}\left(\mu=0, \sigma^{2}=1\right)$ and let $Q(1)=\operatorname{Pr}[\mathbf{W}>1]$. (There is no closed-form expression for $Q(1)$, but it's approximately 0.159 .)
Find the conditional expectation $\mathbb{E}[\mathbf{W} \mid \mathbf{W}>1]$ in terms of $Q(1)$.

