Probability Theory Homework 8

Mikhail Lavrov

due Monday, April 29, 2024

1 Course evaluations

Course evaluations are now available! I am pretty sure you can find a link to them on the D2L home page (https://kennesaw.view.usg.edu/d2l/home); let me know if you have trouble. The deadline to fill out the course evaluations is by the end of the day on Monday, April 29; the same due date as this homework assignment.
I really appreciate getting feedback on my teaching, so it means a lot to me if you fill these out. As added incentive, if at least half of you fill out a course evaluation, I will wear a funny hat for the final exam.

2 Problems on the last few lectures

1. Just to give you a break from all the integrals, here is a mixture distribution problem about two discrete random variables.
Suppose I have three dice in my pocket: two fair dice that land on 6 with probability $\frac{1}{6}$, and a loaded die that lands on 6 with probability $\frac{1}{2}$. I take a random die out of my pocket, roll it 10 times, and count the number of sixes rolled. Let \mathbf{N} be the result I get.
(a) Describe the distribution of \mathbf{N} as a mixture of two distributions we know, and give the weights used in the mixture.
(b) What is $\mathbb{E}[\mathbf{N}]$?
(c) What is $\operatorname{Pr}[\mathbf{N}=0]$?
2. Suppose that two random variables \mathbf{X} and \mathbf{Y} have the joint PDF

$$
f_{\mathbf{X Y}}(u, v)= \begin{cases}60 u^{2} v & u \geq 0, v \geq 0, \text { and } u+v \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Are \mathbf{X} and \mathbf{Y} independent?
(b) What is the marginal distribution $f_{\mathbf{X}}(t)$?
(c) What is $\operatorname{Pr}[\mathbf{X} \geq \mathbf{Y}]$? (To set up the right integral, it might help you to draw the range of (\mathbf{X}, \mathbf{Y}) in the uv-plane and identify the region within that range where $u \geq v$.)
3. You are a birdwatcher listening for bird calls in a quiet park on a peaceful April day.

Based on your experience, you hear an average of one bird call per minute. Also, when you hear a bird call, it's a robin $\frac{1}{2}$ of the time, a woodpecker $\frac{1}{3}$ of the time, and a sparrow $\frac{1}{6}$ of the time.

Assuming that three types of bird calls are independent Poisson processes, identify the distributions of the following random variables: give the name of the distribution and its parameters.
(a) \mathbf{W} is the time it takes you to hear a woodpecker call.
(b) \mathbf{R} is the number of robin calls you hear over the course of an hour.
(c) \mathbf{T} is the time it takes you to hear 10 bird calls total.
(d) After you've heard 10 bird calls total, \mathbf{S} is the number of sparrow calls you've heard.

3 Review problems

4. An arcade machine costs one dollar to play. Every time you play, there is a $\frac{1}{10}$ chance of winning.
(a) Let \mathbf{A} be the number of times you play until you win. Find the variance $\operatorname{Var}[\mathbf{A}]$.
(b) Ten people play the arcade machine; each one keeps playing until they win, and then it's the next person's turn. Let \mathbf{B} be the number of times they play in total. Find the variance $\operatorname{Var}[\mathbf{B}]$.
(c) Ten years later, you come back to the arcade machine, and it's exactly the same, except that due to inflation, the machine costs $\$ 10$ to play.
Let \mathbf{C} be the the total cost of playing until you win. Find the variance $\operatorname{Var}[\mathbf{C}]$.
5. Let \mathbf{D} be a random variable with range $\{1,2,3,4\}$ and the probability mass function

$$
P_{\mathbf{D}}(1)=0.1, \quad P_{\mathbf{D}}(2)=0.2, \quad P_{\mathbf{D}}(3)=0.3, \quad P_{\mathbf{D}}(4)=0.4 .
$$

If you take 10 independent random samples from the distribution of \mathbf{D}, what is the probability that you get the results $1,2,2,3,3,3,4,4,4,4$, in any order?

