Classification of Lagrangian H-umbilical Surfaces of Constant Curvature in Complex Lorentzian Plane

Shangrong Deng
(Communicated by Cihan Özgür)

Abstract

Chen and Fastenakels classified all flat Lagrangian Surfaces in Complex Lorentzian Plane C_{1}^{2} in [7] . In this article, we completely classify non-flat Lagrangian H -umbilical Surfaces of constant curvature in Complex Lorentzian Plane C_{1}^{2}.

Keywords: Lagrangian submanifold, H-umbilical submanifold, Complex Lorentzian plane
AMS Subject Classification (2010): Primary 53C40, 53C15, 53C25.

1. Introduction

Let $L: M \rightarrow \mathbf{C}^{\mathbf{n}}$ be a Lagrangian isometric immersion. For $n \geq 3$, if L is a Lagrangian H -umbilical immersion of constant sectional curvature, then L is flat or $\lambda=2 \mu \neq 0$. Therefore L is flat or locally a Lagrangian pseudosphere [Theorem 3.1 in [2]].

The situation in $n=2$ is much more complicated. Lagrangian H-umbilical Surfaces with $\lambda=2 \mu$ in complex Euclidean plane consist of a much bigger famliy of surfaces including the Lagrangian pseudo-sphere. Lagrangian H-umbilical Surfaces of constant curvature in complex Euclidean plane are completely classified in [3].

In [4] B.-Y. Chen proved that for $n \geq 3$, if L is a Lagrangian H -umbilical submanifold of constant sectional curvature in the indefinite complex Euclidean space $\mathbf{C}_{\mathbf{k}}^{\mathbf{n}}$, then L is flat or $\lambda=2 \mu \neq 0$. Hence L is flat, or locally either a Lagrangian pseudo-Riemannian sphere or a Lagrangian pseudo-hyperbolic space [Theorem 4.1 in [4]].

For $n=2$, Chen and Fastenakels classified all flat Lagrangian Surfaces in Complex Lorentzian Plane \mathbf{C}_{1}^{2} in [7]. In this article, we completely classify non-flat Lagrangian H-umbilical surfaces of constant curvature in complex Lorentzian plane \mathbf{C}_{1}^{2}. Similar to Riemanian case, Lagrangian H-umbilical surfaces with $\lambda=2 \mu \neq 0$ in complex Lorentzian plane come from two large families of surfaces containing Lagrangian pseudo-Riemannian 2 sphere and Lagrangian pseudo-hyperbolic 2 space. We also determine all the cases without the condition $\lambda=$ $2 \mu \neq 0$. Our results complete the classification of Lagrangian H-umbilical submanifolds of constant sectional curvature in indefinite complex Euclidean spaces.

2. Preliminaries

Let $L: M \rightarrow \mathbf{C}_{1}^{2}$ be an isometric immersion of a 2-dimensional pseudo-Riemannian manifold M into the complex Lorentzian plane \mathbf{C}_{1}^{2}. Then M is called a Lagrangian (or totally real) submanifold if the almost complex structure J of \mathbf{C}_{1}^{2} carries each tangent space of M into its corresponding normal space. The formulas of Gauss

[^0]and Weingarten are given respectively by
\[

$$
\begin{align*}
& \tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \\
& \tilde{\nabla}_{X} \xi=-A_{\xi} X+D_{X} \xi, \tag{2.1}
\end{align*}
$$
\]

for tangent vector fields X and Y and normal vector fields ξ, where D is the normal connection. The second fundamental form h is related to A_{ξ} by

$$
\langle h(X, Y), \xi\rangle=\left\langle A_{\xi} X, Y\right\rangle .
$$

The mean curvature vector of M in $\mathbf{C}_{\mathbf{1}}^{\mathbf{2}}$ is defined by

$$
H=\frac{1}{2} \text { trace } h
$$

The Gauss and Codazzi equations are given by

$$
\begin{aligned}
& \langle R(X, Y) Z, W\rangle=\langle h(X, W), h(Y, Z)\rangle-\langle h(X, Z), h(Y, W)\rangle, \\
& (\nabla h)(X, Y, Z)=(\nabla h)(Y, X, Z)
\end{aligned}
$$

where (∇h) is defined by

$$
(\nabla h)(X, Y, Z)=D_{X} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right)
$$

When M is a Lagrangian surface in $\mathbf{C}_{\mathbf{1}}^{\mathbf{2}}$, we have

$$
\begin{aligned}
& D_{X} J Y=J \nabla_{X} Y \\
& \langle h(X, Y), J Z\rangle=\langle h(Y, Z), J X\rangle=\langle h(Z, X), J Y\rangle
\end{aligned}
$$

It is well known that there exist no totally umbilical Lagrangian submanifolds in a complex or psuedo complex space-form with $n \geq 2$ except the totally geodesic ones (see [8]). To investigate the "simplest" Lagrangian submanifolds next to the totally geodesic ones in complex or psuedo complex space-forms, B.-Y. Chen introduced the concept of Lagrangian H-umbilical submanifolds in [2, 4].

If $L: M \rightarrow \mathbf{C}_{\mathbf{1}}^{\mathbf{2}}$ is a Lagrangian H -umbilical surface, the second fundamental form takes the following form:

$$
\begin{equation*}
h\left(e_{1}, e_{1}\right)=\lambda J e_{1}, \quad h\left(e_{1}, e_{2}\right)=\mu J e_{2}, \quad h\left(e_{2}, e_{2}\right)=-\mu J e_{1} \tag{2.2}
\end{equation*}
$$

for some suitable functions λ and μ with respect to some suitable orthonormal local frame field.
For vectors in $\mathbf{C}_{\mathbf{1}}^{\mathbf{2}}$, we have the following lemma (Lemma 2.3 in [6])
Lemma 2.1. Let u, v be any two vectors in \mathbf{C}_{1}^{2} and let a, b be any two complex numbers. Then we have

$$
\begin{aligned}
& \langle a u, b v\rangle=\langle a, b\rangle\langle u, v\rangle+\langle i a, b\rangle\langle u, i v\rangle \\
& \langle a u, i b v\rangle=\langle a, b\rangle\langle u, i v\rangle+\langle a, i b\rangle\langle u, v\rangle
\end{aligned}
$$

where $\langle a, b\rangle$ and $\langle u, v\rangle$ are cononical product for complex numbers and cononical inner product for vectors in $\mathbf{C}_{\mathbf{1}}^{\mathbf{1}}$.

3. Lagrangian H-umbilical Surfaces of constant curvature in \mathbf{C}_{1}^{2}

Let $L: M \rightarrow \mathbf{C}_{1}^{2}$ be a Lagrangian H -umbilical surface of constant curvature whose second fundamental form satisfies (2.2) with respect to some orthonormal local frame field $\left\{e_{1}, e_{2}\right\}$. Since the complex structure J interchanges the tangent and normal spaces of M in \mathbf{C}_{1}^{2}, M has real index 1 (i.e. M is Lorentzian [1] or [6]). We divide the classification into two cases: e_{1} is time-like or e_{1} is space-like.

Assuming e_{1} is time-like, we have

Theorem 3.1. Let $L: M \rightarrow \mathbf{C}_{\mathbf{1}}^{2}$ be a Lagrangian H-umbilical surface of non-zero constant curvature K whose second fundamental form satisfies (2.2) with respect to some orthonormal local frame field $\left\{e_{1}, e_{2}\right\}$. If e_{1} is time-like, then one of the following four statements holds:
(1) $K=-b^{2}$ and L is congruent to the Lagrangian immersion

$$
\begin{equation*}
L(s, t)=e^{2 i b s} z(t)+\int_{0}^{t} z^{\prime}(t) e^{-2 i \theta(t)} d t \tag{3.1}
\end{equation*}
$$

where b is a positive number, $\theta(t)$ a function on (α, β) containing 0 , and $z(t)$ a $\mathbf{C}_{\mathbf{1}}^{2}$ valued solution to the ordinary differential equation:

$$
z^{\prime \prime}(t)-i \theta^{\prime}(t) z^{\prime}(t)-b^{2} z(t)=0
$$

(2) $K=-b^{2}<-1$ and L is congruent to

$$
\begin{align*}
L(s, t)= & \frac{\cos (b s)}{\sqrt{b^{2}-1}} \exp \left(i \sin ^{-1}\left(\frac{b \sin (b s)}{\sqrt{b^{2}-1}}\right)-\frac{i}{b} \tan ^{-1}\left(\frac{\sin (b s)}{\sqrt{b^{2} \cos ^{2}(b s)-1}}\right)\right) \\
& \times\left(-i c_{1}+\cosh \left(\sqrt{b^{2}-1} t\right),-i c_{2}+\sinh \left(\sqrt{b^{2}-1} t\right)\right) \tag{3.2}\\
& +\left(\int_{0}^{s} \exp \left(2 i \sin ^{-1}\left(\frac{b \sin (b s)}{\sqrt{b^{2}-1}}\right)-\frac{i}{b} \tan ^{-1}\left(\frac{\sin (b s)}{\sqrt{b^{2} \cos ^{2}(b s)-1}}\right)\right) d s\right)\left(c_{1}, c_{2}\right)
\end{align*}
$$

for some constants c_{1}, c_{2}.
(3) $K=-b^{2}$ and L is congruent to

$$
\begin{align*}
L(s, t)= & \frac{\cos (b s)}{\sqrt{b^{2}+1}} \exp \left(i \sin ^{-1}\left(\frac{b \sin (b s)}{\sqrt{b^{2}+1}}\right)+\frac{i}{b} \tanh ^{-1}\left(\frac{\sin (b s)}{\sqrt{b^{2} \cos ^{2}(b s)+1}}\right)\right) \\
& \times\left(-i c_{1}+\cosh \left(\sqrt{b^{2}+1} t\right),-i c_{2}+\sinh \left(\sqrt{b^{2}+1} t\right)\right) \tag{3.3}\\
& +\left(\int_{0}^{s} \exp \left(2 i \sin ^{-1}\left(\frac{b \sin (b s)}{\sqrt{b^{2}+1}}\right)+\frac{i}{b} \tanh ^{-1}\left(\frac{\sin (b s)}{\sqrt{b^{2} \cos ^{2}(b s)+1}}\right)\right) d s\right)\left(c_{1}, c_{2}\right)
\end{align*}
$$

for some constants c_{1}, c_{2}.
(4) $K=b^{2}$ and L is congruent to

$$
\begin{align*}
L(s, t)= & \frac{\cosh (b s)}{\sqrt{1-b^{2}}} \exp \left(i \sin ^{-1}\left(\frac{b \sinh (b s)}{\sqrt{1-b^{2}}}\right)+\frac{i}{b} \tan ^{-1}\left(\frac{\sinh (b s)}{\sqrt{1-b^{2} \cosh ^{2}(b s)}}\right)\right) \\
& \times\left(-i c_{1}+\cosh \left(\sqrt{1-b^{2}} t\right),-i c_{2}+\sinh \left(\sqrt{1-b^{2}} t\right)\right) \tag{3.4}\\
& +\left(\int_{0}^{s} \exp \left(2 i \sin ^{-1}\left(\frac{b \sinh (b s)}{\sqrt{1-b^{2}}}\right)+\frac{i}{b} \tan ^{-1}\left(\frac{\sinh (b s)}{\sqrt{1-b^{2} \cosh ^{2}(b s)}}\right)\right) d s\right)\left(c_{1}, c_{2}\right)
\end{align*}
$$

for some constants c_{1}, c_{2}.
Proof. Let $L: M \rightarrow \mathbf{C}_{1}^{2}$ be a Lagrangian H-umbilical surface of non-zero constant curvature K whose second fundamental form satisfies (2.2) with respect to some orthonormal local frame field $\left\{e_{1}, e_{2}\right\}$. Since e_{1} is timelike, from (2,2), Gauss and Codazzi equations we find ([9] and [4]):

$$
\begin{align*}
& e_{1} \mu=(\lambda-2 \mu) \omega_{1}^{2}\left(e_{2}\right) \\
& e_{2} \lambda=(2 \mu-\lambda) \omega_{1}^{2}\left(e_{1}\right) \tag{3.5}\\
& e_{2} \mu=-3 \mu \omega_{1}^{2}\left(e_{1}\right) \\
& K=\mu(\mu-\lambda)=\text { constant } .
\end{align*}
$$

Differentiating with respect to e_{2} the last equation of (3.5), we have

$$
\begin{equation*}
0=e_{2} K=(2 \mu-\lambda) e_{2} \mu-\mu e_{2} \lambda=4 \mu(2 \mu-\lambda) \omega_{2}^{1}\left(e_{1}\right) \tag{3.6}
\end{equation*}
$$

If $\mu(\lambda-2 \mu)=0$, then $K=0$ or $\lambda=2 \mu$. Since $K \neq 0$ (flat Lagrangian surfaces in Complex Lorentzian Plane \mathbf{C}_{1}^{2} are completely classified in [7]), we have $\lambda=2 \mu$. Thus, by Theorem 3.2 of [9], we have statement (1). Lagrangian H-umbilical surfaces with $\lambda=2 \mu$ in Complex Lorentzian Plane \mathbf{C}_{1}^{2} are completely classified in [9] and statement (1) is one of the main results.

If $\mu(\lambda-2 \mu) \neq 0$, from (3.6) we get $\omega_{2}^{1}\left(e_{1}\right)=0$. Hence from (3.5) we have $e_{2} \lambda=e_{2} \mu=0$.
Since $\nabla_{e_{1}} e_{1}=\omega_{1}^{2}\left(e_{1}\right) e_{2}=0$, the integral curves of e_{1} are geodesic in M. Thus, there exists a local coordinate system $\{s, u\}$ on M such that the metric tensor is given by

$$
\begin{equation*}
g=-d s^{2}+G^{2}(s, u) d u^{2} \tag{3.7}
\end{equation*}
$$

for some function G with $\partial / \partial s=e_{1}, \partial / \partial u=G e_{2}$.
From (3.7) we have

$$
\begin{equation*}
\nabla_{\partial / \partial u} \frac{\partial}{\partial s}=(\ln G)_{s} \frac{\partial}{\partial u}, \quad \omega_{1}^{2}\left(e_{2}\right)=\frac{G_{s}}{G} \tag{3.8}
\end{equation*}
$$

Since $e_{2} \lambda=e_{2} \mu=0$, we get $\lambda=\lambda(s)$ and $\mu=\mu(s)$.
From the first and the last equations of (3.5), we have

$$
(\ln G)_{s}=\omega_{1}^{2}\left(e_{2}\right)=\frac{\mu^{\prime}}{\lambda-2 \mu}=\frac{-\mu \mu^{\prime}}{K+\mu^{2}}
$$

Solving this equation gives $G=F(u) / \sqrt{\left|K+\mu^{2}\right|}$ for some function F.
Therefore, (3.7) becomes

$$
\begin{equation*}
g=-d s^{2}+\frac{F^{2}(u)}{\left|K+\mu^{2}(s)\right|} d u^{2} \tag{3.9}
\end{equation*}
$$

If t is an anti-derivative of $F(u)$, we have from (3.9)

$$
\begin{equation*}
g=-d s^{2}+\frac{d t^{2}}{\left|K+\mu^{2}(s)\right|}, \quad G^{2}(s)=\frac{1}{\left|K+\mu^{2}(s)\right|} \tag{3.10}
\end{equation*}
$$

Case (a): $K=-b^{2}<0$
From (3.7), the Gauss curvature K of M is given by (p .81 in [10]):

$$
K=G_{s s} / G
$$

Therefore we have $G_{s s}+b^{2} G=0$. Solving this equation yields

$$
G=A \cos (b s)+B \sin (b s)
$$

for some constants A and B, not both zero. Thus, we have

$$
\begin{equation*}
g=-d s^{2}+r^{2} \cos ^{2}(b s+c) d u^{2} \tag{3.11}
\end{equation*}
$$

fo some constants $r \neq 0$ and c. After a suitable translation in s and a suitable dilation in $t,(3.11)$ becomes

$$
\begin{equation*}
g=-d s^{2}+\cos ^{2}(b s) d t^{2} \tag{3.12}
\end{equation*}
$$

From (3.12) we have

$$
\begin{align*}
& \nabla_{\partial / \partial s} \frac{\partial}{\partial s}=0, \quad \nabla_{\partial / \partial s} \frac{\partial}{\partial t}=-b \tan (b s) \frac{\partial}{\partial t} \\
& \nabla_{\partial / \partial t} \frac{\partial}{\partial t}=-\frac{b}{2} \sin (2 b s) \frac{\partial}{\partial s} \tag{3.13}
\end{align*}
$$

Case (a-1): $K=-b^{2}<-\mu^{2}$ and $b>0$.
From (3.10) and (3.12), we have $\left|K+\mu^{2}(s)\right|=b^{2}-\mu^{2}=\sec ^{2}(b s) \geq 1$.
Without loss of generality, we assume that

$$
\begin{equation*}
\mu=\sqrt{b^{2}-\sec ^{2}(b s)}, \quad \lambda=\frac{2 b^{2}-\sec ^{2}(b s)}{\sqrt{b^{2}-\sec ^{2}(b s)}} \tag{3.14}
\end{equation*}
$$

From (2.2), (3.12) - (3.14), and Gauss formula we see that the immersion satisfies the following system of PDEs:

$$
\begin{align*}
L_{s s} & =i \frac{2 b^{2}-\sec ^{2}(b s)}{\sqrt{b^{2}-\sec ^{2}(b s)}} L_{s} \\
L_{s t} & =\left(i \sqrt{b^{2}-\sec ^{2}(b s)}-b \tan (b s)\right) L_{t} \tag{3.15}\\
L_{t t} & =-\left(i \sqrt{b^{2} \cos ^{2}(b s)-1}+b \sin (b s)\right) \cos (b s) L_{s}
\end{align*}
$$

After solving the second equation of (3.15), we have

$$
\begin{equation*}
L_{t}=F(t) \cos (b s) \exp \left(i \sin ^{-1}\left(\frac{b \sin (b s)}{\sqrt{b^{2}-1}}\right)-\frac{i}{b} \tan ^{-1}\left(\frac{\sin (b s)}{\sqrt{b^{2} \cos ^{2}(b s)-1}}\right)\right) \tag{3.16}
\end{equation*}
$$

for some $\mathbf{C}_{\mathbf{1}}^{2}$-valued function $F(t)$. Thus, we have

$$
\begin{equation*}
L=A(s)+B(t) \cos (b s) \exp \left(i \sin ^{-1}\left(\frac{b \sin (b s)}{\sqrt{b^{2}-1}}\right)-\frac{i}{b} \tan ^{-1}\left(\frac{\sin (b s)}{\sqrt{b^{2} \cos ^{2}(b s)-1}}\right)\right) \tag{3.17}
\end{equation*}
$$

where $B(t)$ is an anti-derivative of $F(t)$ and $A(s)$ is a $\mathbf{C}_{\mathbf{1}}^{\mathbf{2}}$-valued function. From (3.17) we have

$$
\begin{align*}
L_{s}= & A^{\prime}(s)-B(t)\left(b \sin (b s)-i \sqrt{b^{2} \cos ^{2}(b s)-1}\right) \\
& \times \exp \left(i \sin ^{-1}\left(\frac{b \sin (b s)}{\sqrt{b^{2}-1}}\right)-\frac{i}{b} \tan ^{-1}\left(\frac{\sin (b s)}{\sqrt{b^{2} \cos ^{2}(b s)-1}}\right)\right), \tag{3.18}\\
L_{s s}= & A^{\prime \prime}(s)-B(t) \frac{\left(\sqrt{b^{2}-\sec ^{2}(b s)}+i b \tan (b s)\right)\left(2 b^{2} \cos ^{2}(b s)-1\right)}{\sqrt{b^{2} \cos ^{2}(b s)-1}} \tag{3.19}\\
& \times \exp \left(i \sin ^{-1}\left(\frac{b \sin (b s)}{\sqrt{b^{2}-1}}\right)-\frac{i}{b} \tan ^{-1}\left(\frac{\sin (b s)}{\sqrt{b^{2} \cos ^{2}(b s)-1}}\right)\right)
\end{align*}
$$

Placing (3.18) and (3.19) into the first equation of (3.15), we get

$$
\begin{equation*}
A^{\prime \prime}(s)=i \frac{2 b^{2}-\sec ^{2}(b s)}{\sqrt{b^{2}-\sec ^{2}(b s)}} A^{\prime}(s) \tag{3.20}
\end{equation*}
$$

Solving this equation, we have

$$
\begin{equation*}
A^{\prime}(s)=C \exp \left(2 i \sin ^{-1}\left(\frac{b \sin (b s)}{\sqrt{b^{2}-1}}\right)-\frac{i}{b} \tan ^{-1}\left(\frac{\sin (b s)}{\sqrt{b^{2} \cos ^{2}(b s)-1}}\right)\right) \tag{3.21}
\end{equation*}
$$

for some vector C in $\mathbf{C}_{\mathbf{1}}^{\mathbf{1}}$. Hence, we have

$$
\begin{equation*}
A(s)=C \int_{0}^{s} \exp \left(2 i \sin ^{-1}\left(\frac{b \sin (b s)}{\sqrt{b^{2}-1}}\right)-\frac{i}{b} \tan ^{-1}\left(\frac{\sin (b s)}{\sqrt{b^{2} \cos ^{2}(b s)-1}}\right)\right) d s+E \tag{3.22}
\end{equation*}
$$

for some vector E in $\mathbf{C}_{\mathbf{1}}^{\mathbf{2}}$.
By a suitable translation, we may assume $E=0$. Hence, we have from (3.17)

$$
\begin{align*}
L= & C \int_{0}^{s} \exp \left(2 i \sin ^{-1}\left(\frac{b \sin (b s)}{\sqrt{b^{2}-1}}\right)-\frac{i}{b} \tan ^{-1}\left(\frac{\sin (b s)}{\sqrt{b^{2} \cos ^{2}(b s)-1}}\right)\right) d s \tag{3.23}\\
& +B(t) \cos (b s) \exp \left(i \sin ^{-1}\left(\frac{b \sin (b s)}{\sqrt{b^{2}-1}}\right)-\frac{i}{b} \tan ^{-1}\left(\frac{\sin (b s)}{\sqrt{b^{2} \cos ^{2}(b s)-1}}\right)\right)
\end{align*}
$$

Thus, we have

$$
\begin{gather*}
L_{s}=\left(C+i \sqrt{b^{2}-1} B(t)\right) \exp \left(2 i \sin ^{-1}\left(\frac{b \sin (b s)}{\sqrt{b^{2}-1}}\right)-\frac{i}{b} \tan ^{-1}\left(\frac{\sin (b s)}{\sqrt{b^{2} \cos ^{2}(b s)-1}}\right)\right) \tag{3.24}\\
L_{t}=B^{\prime}(t) \cos (b s) \exp \left(i \sin ^{-1}\left(\frac{b \sin (b s)}{\sqrt{b^{2}-1}}\right)-\frac{i}{b} \tan ^{-1}\left(\frac{\sin (b s)}{\sqrt{b^{2} \cos ^{2}(b s)-1}}\right)\right) \tag{3.25}
\end{gather*}
$$

Placing (3.24) and (3.25) into the last equation of (3.15), we get

$$
\begin{equation*}
B^{\prime \prime}(t)-\left(b^{2}-1\right) B(t)=-i \sqrt{b^{2}-1} C \tag{3.26}
\end{equation*}
$$

From (3.26) we have

$$
\begin{equation*}
B(t)=C_{1} \cosh \left(\sqrt{b^{2}-1} t\right)+C_{2} \sinh \left(\sqrt{b^{2}-1} t\right)-\frac{i}{\sqrt{b^{2}-1}} C \tag{3.27}
\end{equation*}
$$

Combining (3.23) and (3.27), we have

$$
\begin{align*}
L= & C \int_{0}^{s} \exp \left(2 i \sin ^{-1}\left(\frac{b \sin (b s)}{\sqrt{b^{2}-1}}\right)-\frac{i}{b} \tan ^{-1}\left(\frac{\sin (b s)}{\sqrt{b^{2} \cos ^{2}(b s)-1}}\right)\right) d s \\
& +\left(C_{1} \cosh \left(\sqrt{b^{2}-1} t\right)+C_{2} \sinh \left(\sqrt{b^{2}-1} t\right)-\frac{i}{\sqrt{b^{2}-1}} C\right) \cos (b s) \tag{3.28}\\
& \times \exp \left(i \sin ^{-1}\left(\frac{b \sin (b s)}{\sqrt{b^{2}-1}}\right)-\frac{i}{b} \tan ^{-1}\left(\frac{\sin (b s)}{\sqrt{b^{2} \cos ^{2}(b s)-1}}\right)\right)
\end{align*}
$$

Therefore, we obtain statement (2) by choosing suitable initial conditions, i.e. the immersion is congruent to (3.2).

Case (a-2): $K=-b^{2}>-\mu^{2}$ and $b>0$.
From (3.10) and (3.12), we have $\left|K+\mu^{2}(s)\right|=\mu^{2}-b^{2}=\sec ^{2}(b s)$.
Hence, without loss of generality, we assume that

$$
\begin{equation*}
\mu=\sqrt{b^{2}+\sec ^{2}(b s)}, \quad \lambda=\frac{2 b^{2}+\sec ^{2}(b s)}{\sqrt{b^{2}+\sec ^{2}(b s)}} \tag{3.29}
\end{equation*}
$$

From (2.2), (3.12), (3.14), (3.29), and Gauss formula we see that the immersion satisfies the following system of PDEs:

$$
\begin{align*}
L_{s s} & =i \frac{2 b^{2}+\sec ^{2}(b s)}{\sqrt{b^{2}+\sec ^{2}(b s)}} L_{s} \\
L_{s t} & =\left(i \sqrt{b^{2}+\sec ^{2}(b s)}-b \tan (b s)\right) L_{t} \tag{3.30}\\
L_{t t} & =-\left(i \sqrt{b^{2} \cos ^{2}(b s)+1}+b \sin (b s)\right) \cos (b s) L_{s}
\end{align*}
$$

After solving the PDE system (3.30) in the same way as in Case (a-1) and after choosing suitable initial conditions, we obtain statement (3), i.e. the immersion is congruent to (3.3).

Case (b): $K=b^{2}>0$ and $b>0$.
From the Gauss curvature $K=G_{s s} / G$, we have $G_{s s}-b^{2} G=0$. Solving this equation yields

$$
G=A \cosh (b s)+B \sinh (b s)
$$

for some constants A and B, not both zero.
After applying a suitable translation in s and a suitable dilation in t, we have

$$
\begin{equation*}
g=-d s^{2}+\cosh ^{2}(b s) d t^{2} \tag{3.31}
\end{equation*}
$$

From which we have

$$
\begin{align*}
& \nabla_{\partial / \partial s} \frac{\partial}{\partial s}=0, \quad \nabla_{\partial / \partial s} \frac{\partial}{\partial t}=b \tanh (b s) \frac{\partial}{\partial t}, \tag{3.32}\\
& \nabla_{\partial / \partial t} \frac{\partial}{\partial t}=\frac{b}{2} \sinh (2 b s) \frac{\partial}{\partial s} .
\end{align*}
$$

From (3.10) and (3.31), we have $\left|K+\mu^{2}(s)\right|=b^{2}+\mu^{2}=\operatorname{sech}^{2}(b s)$.
Therefore, we have $b^{2} \leq \operatorname{sech}^{2}(b s) \leq 1$. Without loss of generality, we assume that

$$
\begin{equation*}
\mu=\sqrt{\operatorname{sech}^{2}(b s)-b^{2}}, \quad \lambda=\frac{\operatorname{sech}^{2}(b s)-2 b^{2}}{\sqrt{\operatorname{sech}^{2}(b s)-b^{2}}} \tag{3.33}
\end{equation*}
$$

From (2.2), (3.31)-(3.33), and Gauss formula we see that the immersion satisfies the following system of PDEs:

$$
\begin{align*}
L_{s s} & =i \frac{\operatorname{sech}^{2}(b s)-2 b^{2}}{\sqrt{\operatorname{sech}^{2}(b s)-b^{2}}} L_{s}, \\
L_{s t} & =\left(i \sqrt{\operatorname{sech}^{2}(b s)-b^{2}}+b \tanh (b s)\right) L_{t} \tag{3.34}\\
L_{t t} & =-\left(i \sqrt{1-b^{2} \cosh ^{2}(b s)}-b \sinh (b s)\right) \cosh (b s) L_{s}
\end{align*}
$$

After solving the PDE system (3.34) in the same way as in Case (a-1) and after choosing suitable initial conditions, we obtain statement (4), i.e. the immersion is congruent to (3.4).

If e_{1} is space-like, we have
Theorem 3.2. Let $L: M \rightarrow \mathbf{C}_{1}^{2}$ be a Lagrangian H-umbilical surface of non-zero constant curvature K whose second fundamental form satisfies (2.2) with respect to some orthonormal local frame field $\left\{e_{1}, e_{2}\right\}$. If e_{1} is space-like, then one of the following four statements holds:
(1) $K=b^{2}$ and L is congruent to the Lagrangian immersion

$$
\begin{equation*}
W(s, t)=e^{2 i b s} z(t)+\int_{0}^{t} z^{\prime}(t) e^{-2 i \theta(t)} d t \tag{3.35}
\end{equation*}
$$

where b is a positive number, $\theta(t)$ a function on (α, β) containing 0 , and $z(t)$ a $\mathbf{C}_{\mathbf{1}}^{\mathbf{2}}$ valued solution to the ordinary differential equation:

$$
z^{\prime \prime}(t)-i \theta^{\prime}(t) z^{\prime}(t)-b^{2} z(t)=0
$$

(2) $K=b^{2}>1$ and L is congruent to

$$
\begin{align*}
W(s, t)= & \frac{\cos (b s)}{\sqrt{b^{2}-1}} \exp \left(i \sin ^{-1}\left(\frac{b \sin (b s)}{\sqrt{b^{2}-1}}\right)-\frac{i}{b} \tan ^{-1}\left(\frac{\sin (b s)}{\sqrt{b^{2} \cos ^{2}(b s)-1}}\right)\right) \\
& \times\left(-i c_{1}+\cosh \left(\sqrt{b^{2}-1} t\right),-i c_{2}+\sinh \left(\sqrt{b^{2}-1} t\right)\right) \tag{3.36}\\
& +\left(\int_{0}^{s} \exp \left(2 i \sin ^{-1}\left(\frac{b \sin (b s)}{\sqrt{b^{2}-1}}\right)-\frac{i}{b} \tan ^{-1}\left(\frac{\sin (b s)}{\sqrt{b^{2} \cos ^{2}(b s)-1}}\right)\right) d s\right)\left(c_{1}, c_{2}\right)
\end{align*}
$$

for some constants c_{1}, c_{2}.
(3) $K=b^{2}$ and L is congruent to

$$
\begin{align*}
W(s, t)= & \frac{\cos (b s)}{\sqrt{b^{2}+1}} \exp \left(i \sin ^{-1}\left(\frac{b \sin (b s)}{\sqrt{b^{2}+1}}\right)+\frac{i}{b} \tanh ^{-1}\left(\frac{\sin (b s)}{\sqrt{b^{2} \cos ^{2}(b s)+1}}\right)\right) \\
& \times\left(-i c_{1}+\cosh \left(\sqrt{b^{2}+1} t\right),-i c_{2}+\sinh \left(\sqrt{b^{2}+1} t\right)\right) \tag{3.37}\\
& +\left(\int_{0}^{s} \exp \left(2 i \sin ^{-1}\left(\frac{b \sin (b s)}{\sqrt{b^{2}+1}}\right)+\frac{i}{b} \tanh ^{-1}\left(\frac{\sin (b s)}{\sqrt{b^{2} \cos ^{2}(b s)+1}}\right)\right) d s\right)\left(c_{1}, c_{2}\right)
\end{align*}
$$

for some constants c_{1}, c_{2}.
(4) $K=-b^{2}$ and L is congruent to

$$
\begin{align*}
W(s, t)= & \frac{\cosh (b s)}{\sqrt{1-b^{2}}} \exp \left(i \sin ^{-1}\left(\frac{b \sinh (b s)}{\sqrt{1-b^{2}}}\right)+\frac{i}{b} \tan ^{-1}\left(\frac{\sinh (b s)}{\sqrt{1-b^{2} \cosh ^{2}(b s)}}\right)\right) \\
& \times\left(-i c_{1}+\cosh \left(\sqrt{1-b^{2}} t\right),-i c_{2}+\sinh \left(\sqrt{1-b^{2}} t\right)\right) \tag{3.38}\\
& +\left(\int_{0}^{s} \exp \left(2 i \sin ^{-1}\left(\frac{b \sinh (b s)}{\sqrt{1-b^{2}}}\right)+\frac{i}{b} \tan ^{-1}\left(\frac{\sinh (b s)}{\sqrt{1-b^{2} \cosh ^{2}(b s)}}\right)\right) d s\right)\left(c_{1}, c_{2}\right)
\end{align*}
$$

for some constants c_{1}, c_{2}.

Proof. Let $L: M \rightarrow \mathbf{C}_{1}^{2}$ be a Lagrangian H-umbilical surface of non-zero constant curvature K whose second fundamental form satisfies (2.2) with respect to some orthonormal local frame field $\left\{e_{1}, e_{2}\right\}$. Since e_{1} is spacelike, from (2,2), Gauss and Codazzi equations we find ([9] and [4]):

$$
\begin{align*}
& e_{1} \mu=-(\lambda-2 \mu) \omega_{1}^{2}\left(e_{2}\right), \\
& e_{2} \lambda=-(2 \mu-\lambda) \omega_{1}^{2}\left(e_{1}\right), \tag{3.39}\\
& e_{2} \mu=3 \mu \omega_{1}^{2}\left(e_{1}\right), \\
& K=\mu(\lambda-\mu)=\text { constant } .
\end{align*}
$$

Differentiating with respect to e_{2} the last equation of (3.39), we have $0=\mu(2 \mu-\lambda) \omega_{2}^{1}\left(e_{1}\right)$.
If $\mu(\lambda-2 \mu)=0$, then $K=0$ or $\lambda=2 \mu$. Since $K \neq 0$, we have $\lambda=2 \mu$. Thus, by Theorem 3.2 of [9], we have statement (1).

If $\mu(\lambda-2 \mu) \neq 0$, we get $\omega_{2}^{1}\left(e_{1}\right)=0$. Hence from (3.39) we have $e_{2} \lambda=e_{2} \mu=0$.
Since $\nabla_{e_{1}} e_{1}=-\omega_{1}^{2}\left(e_{1}\right) e_{2}=0$, the integral curves of e_{1} are geodesic in M. Thus, there exists a local coordinate system $\{s, u\}$ on M such that the metric tensor is given by

$$
\begin{equation*}
g=d s^{2}-G^{2}(s, u) d u^{2} \tag{3.40}
\end{equation*}
$$

for some function G with $\partial / \partial s=e_{1}, \partial / \partial u=G e_{2}$.
Since $\left\langle e_{2}, e_{2}\right\rangle=-1$, from (3.40) we have

$$
\begin{equation*}
\nabla_{\partial / \partial u} \frac{\partial}{\partial s}=(\ln G)_{s} \frac{\partial}{\partial u}, \quad \omega_{1}^{2}\left(e_{2}\right)=-\frac{G_{s}}{G} \tag{3.41}
\end{equation*}
$$

Since $e_{2} \lambda=e_{2} \mu=0$, we get $\lambda=\lambda(s)$ and $\mu=\mu(s)$.
From the first and the last equations of (3.39), we have

$$
(\ln G)_{s}=-\omega_{1}^{2}\left(e_{2}\right)=\frac{\mu^{\prime}}{\lambda-2 \mu}=\frac{\mu \mu^{\prime}}{K-\mu^{2}}
$$

Solving this equation gives $G=F(u) / \sqrt{\left|K-\mu^{2}\right|}$ for some function F.

Therefore, (3.40) becomes

$$
\begin{equation*}
g=d s^{2}-\frac{F^{2}(u)}{\left|K-\mu^{2}(s)\right|} d u^{2} \tag{3.42}
\end{equation*}
$$

If t is an anti-derivative of $F(u)$, we have from (3.42)

$$
\begin{equation*}
g=d s^{2}-\frac{d t^{2}}{\left|K-\mu^{2}(s)\right|}, \quad G^{2}(s)=\frac{1}{\left|K-\mu^{2}(s)\right|} \tag{3.43}
\end{equation*}
$$

The rest of the proof is almost the same as in Case (a) and (b) in Theorem 3.1. Finally we obtain statement (2), (3) and (4) if e_{1} is space-like.

Remark 3.1. Flat Lagrangian Surfaces in Complex Lorentzian Plane \mathbf{C}_{1}^{2} are completely classified in [7].
Remark 3.2. Theorem 3.1 and Theorem 3.2 completely classify Lagrangian H-umbilical Surfaces of non-zero constant curvature in Complex Lorentzian Plane $\mathbf{C}_{\mathbf{1}}^{\mathbf{2}}$

References

[1] Anciaux, H., Minimal Submanifolds in Pseudo-Riemannian Geometry. World Scientific Publications, New Jersey, 2010.
[2] Chen, B.-Y., Complex extensors and Lagrangian submanifolds in complex Euclidean spaces. Tohoku Math. J., 49 (1997), $277-297$.
[3] Chen, B.-Y., Lagrangian Surfaces of Constant Curvature in Complex Euclidean Plane. Tohoku Math. J., 56 (2004), 289-298.
[4] Chen, B.-Y., Complex extensors and Lagrangian submanifolds in indefinite complex Euclidean spaces. Bulletin Math. Inst. Academia Sinica , 31 (2003), 151-179.
[5] Chen, B.-Y., Pseudo-Riemannian Geometry, δ-invariants and Applications. World Scientific Publications, Hackensack, New Jersey, 2011.
[6] Chen, B.-Y., A Construction Method of Lagrangian Surfaces in Complex Pseudo Euclidean Plane \mathbf{C}_{1}^{2} and its Applications. Int. Electron. J. Geom., 7 (2014), 4-25.
[7] Chen, B.-Y. and Fastenakels, J., Classification of Flat Lagrangianl Surfaces in Complex Lorentzian Plane. Acta Mathematica Sinica, 23 (2007), No.12, 2111-2144.
[8] Chen, B.-Y. and Ogiue, K., Two theorems on Kaehler manifolds. Michigan Math. J., 21 (1974), 225-229.
[9] Deng, S., Lagrangian H-umbilical Surfaces in Complex Lorentzian Plane. Int. Electron. J. Geom., 9 (2016), No. 2, 87-93.
[10] O'Neill, B., Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York, 1983.
[11] Yano, K. and Kon, M., Structures on manifolds. Series in Pure Mathematics, 3. World Scientific Publishing Co., Singapore, 1984.

Affiliations

Shangrong Deng

Address: Department of Mathematics, Kennesaw State University, 1100 South Marietta Parkway, Marietta, GA 30060, U.S.A.
E-MAIL: sdeng@kennesaw.edu

[^0]: Received : 15-01-2017, Accepted : 22-03-2017

 * Corresponding author

