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ABSTRACT

We completely classify Lagrangian H-umbilical Surfaces with λ = 2µ in Complex Lorentzian Plane
C2

1.
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1. Introduction

Let L :M → Cn be a Lagrangian isometric immersion. For n ≥ 3, L is a Lagrangian H-umbilical immersion
with λ = 2µ 6= 0 if and only if L is locally a Lagrangian pseudo-sphere [Theorem 3.1 in [2]] .

The situation in n = 2 is very different. Lagrangian H-umbilical Surfaces with λ = 2µ in complex Euclidean
plane consist of a much bigger famliy of surfaces including the Lagrangian pseudo-sphere ( see [3] ).

In [4] B.-Y. Chen proved that for n ≥ 3, L is a Lagrangian H-umbilical submanifold with λ = 2µ 6= 0 in the
indefinite complex Euclidean space Cn

k if and only if L is locally either a Lagrangian pseudo-Riemannian sphere
or a Lagrangian pseudo-hyperbolic space [Theorem 4.1 in [4]] .

In this article, we completely classify Lagrangian H-umbilical surfaces with λ = 2µ in complex Lorentzian
plane C2

1. Similar to Riemanian case, Lagrangian H-umbilical surfaces with λ = 2µ 6= 0 in complex Lorentzian
plane come from two large families of surfaces containing Lagrangian pseudo-Riemannian 2 sphere and
Lagrangian pseudo-hyperbolic 2 space. Our results complete the classification of Lagrangian H-umbilical
submanifolds with λ = 2µ in indefinite complex Euclidean spaces.

2. Preliminaries

Let L :M → C2
1 be an isometric immersion of a 2-dimensional pseudo-Riemannian manifold M into the

complex Lorentzian plane C2
1. ThenM is called a Lagrangian (or totally real) submanifold if the almost complex

structure J of C2
1 carries each tangent space of M into its corresponding normal space. The formulas of Gauss

and Weingarten are given respectively by

(2.1)
∇̃XY = ∇XY + h(X,Y ),

∇̃Xξ = −AξX +DXξ,

for tangent vector fields X and Y and normal vector fields ξ, where D is the normal connection. The second
fundamental form h is related to Aξ by

〈h(X,Y ), ξ〉 = 〈AξX,Y 〉 .

The mean curvature vector of M in C2
1 is defined by

H =
1

2
trace h
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The Gauss and Codazzi equations are given by

〈R(X,Y )Z,W 〉 = 〈h(X,W ), h(Y,Z)〉 − 〈h(X,Z), h(Y,W )〉 ,
(∇h)(X,Y, Z) = (∇h)(Y,X,Z),

where (∇h) is defined by

(∇h)(X,Y, Z) = DXh(Y,Z)− h(∇XY,Z)− h(Y,∇XZ).

When M is a Lagrangian surface in C2
1, we have

DXJY = J∇XY,
〈h(X,Y ), JZ〉 = 〈h(Y,Z), JX〉 = 〈h(Z,X), JY 〉 .

It is well known that there exist no totally umbilical Lagrangian submanifolds in a complex or psuedo
complex space-form with n ≥ 2 except the totally geodesic ones (see [7]). To investigate the “simplest”
Lagrangian submanifolds next to the totally geodesic ones in complex or psuedo complex space-forms, B.-Y.
Chen introduced the concept of Lagrangian H-umbilical submanifolds (cf. [2, 4]).

If L :M → C2
1 is a Lagrangian H-umbilical surface, the second fundamental form takes the following form:

h(e1, e1) = λJe1, h(e1, e2) = µJe2, h(e2, e2) = −µJe1

for some suitable functions λ and µ with respect to some suitable orthonormal local frame field.
We also need the following lemma (Lemma 2.3 in [6]) in section 3.

Lemma 2.1. Let u, v be any two vectors in C2
1 and let a, b be any two complex numbers. Then we have

〈au, bv〉 = 〈a, b〉 〈u, v〉+ 〈ia, b〉 〈u, iv〉 ,
〈au, ibv〉 = 〈a, b〉 〈u, iv〉+ 〈a, ib〉 〈u, v〉 ,

where 〈a, b〉 and 〈u, v〉 are cononical product for complex numbers and cononical inner product for vectors in C2
1.

3. Lagrangian H-umbilical Surfaces with λ = 2µ in C2
1

Let L :M → C2
1 be a Lagrangian H-umbilical surface with λ = 2µ. Since the complex structure J interchanges

the tangent and normal spaces of M in C2
1, M has real index 1 ( i.e. M is Lorentzian [1] or [6] ).

Theorem 3.1. Let L :M → C2
1 be a Lagrangian H-umbilical surface with λ = 2µ. If λ = 2µ = 0, L is an open portion

of a totally geodesic Lagrangian plane in C2
1.

Proof. If λ = 2µ = 0, the second fundamental form vanishes identically, then M is totally geodesic and flat.
Therefore L must be an open portion of a totally geodesic Lagrangian plane in C2

1.
2

From now on we assume that λ = 2µ 6= 0.

Theorem 3.2. The following two statements hold:
(i) Let µ = b be a nonzero function, θ(t) a function on (α, β) containg 0, and z(t) a C2

1 valued solution to the ordinary
differential equation:

(3.1) z′′(t)− iθ′(t)z′(t)− b2z(t) = 0

(i-a) If z(t) satisfies the two conditions: |z(t)|2 = −1/(4b2) and |z′(t)|2 = 1/4, the map

(3.2− a) L(s, t) = e2ibsz(t) +

∫ t

0

z′(t)e−2iθ(t)dt

defines a Lagrangian H-umbilical surface in C2
1 whose induced metric is

(3.3− a) g = −ds2 + cos2(bs+ θ(t))dt2
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(i-b) If z(t) satisfies the two conditions: |z(t)|2 = 1/(4b2) and |z′(t)|2 = −1/4, the map

(3.2− b) W (s, t) = e2ibsz(t) +

∫ t

0

z′(t)e−2iθ(t)dt

defines a Lagrangian H-umbilical surface in C2
1 whose induced metric is

(3.3− b) g = ds2 − cos2(bs+ θ(t))dt2

and in either case the second fundamental form is

(3.4) h(e1, e1) = 2bJe1, h(e1, e2) = bJe2, h(e2, e2) = −bJe1

with respect to e1 = ∂/∂s and e2 = sec(bs+ θ(t))∂/∂t.
(ii) Conversely, if L̃ :M → C2

1 is a Lagrangian H-umbilical surface whose second fundamental form satisfies (3.4) for
some function b 6= 0 with respect to some orthonormal local frame field {e1, e2} , then we have:

(ii-1) b is a constant
(ii-2) there exist a function θ(t) and a local coordinate system {s, t} on M with e1 = ∂/∂s such that the metric tensor

is given by (3.3− a) ( or (3.3− b)), and
(ii-3) the immersion L̃ is congruent to the L ( or W respectively ) given in statement (i).

Proof. (i):
Case (i− a): Consider the map defined by (3.2− a) satisfying (3.1) and |z(t)|2 = −1/(4b2) and |z′(t)|2 = 1/4 .
Then we have

(3.5)

Ls = 2ibe2ibsz(t), Lt = (e2ibs + e−2iθ)z′(t),

Lss = −4b2e2ibsz(t), Lst = 2ibe2ibsz′(t),

Ltt = (e2ibs + e−2iθ)z′′(t)− 2ie−2iθθ′z′(t).

By direct computation and (3.1) we also have

(3.6)

Lss = 2ibLs,

Lst = ibsec(bs+ θ)ei(bs+θ)Lt

Ltt = −ibcos(bs+ θ)e−i(bs+θ)Ls − θ′tan(bs+ θ)Lt.

Solution of (3.1) z(t) satisfies 〈z′, iz〉 = 0. Using Lemma 2.1 we have

〈Ls, Ls〉 = −1, 〈Ls, Lt〉 = 0.

〈Lt, Lt〉 = cos2(bs+ θ),

〈iLs, Ls〉 = 0, 〈iLs, Lt〉 = 0

〈iLt, Ls〉 = 0, 〈iLt, Lt〉 = 0

Therefore L is Lagrangian and the induced metric is given by (3.3− a), from which we have

(3.7)
∇∂/∂s

∂

∂s
= 0, ∇∂/∂s

∂

∂t
= −b tan(bs+ θ)

∂

∂t
,

∇∂/∂s
∂

∂s
= − b

2
sin(2bs+ 2θ)

∂

∂s
− θ′tan(bs+ θ)

∂

∂t
.

Setting e1 = ∂
∂s and e2 = sec(bs+ θ) ∂∂t , from Gauss formula we have

h(
∂

∂s
,
∂

∂s
) = Lss −∇∂/∂s

∂

∂s
= 2biLs = 2bJ

∂

∂s

which is
h(e1, e1) = 2bJe1.

Similarly from (3.6), (3.7), and Gauss formula

h(e1, e2) = bJe2, h(e2, e2) = −bJe1.
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Therefore L is a Lagrangian H-umbilical surface with λ = 2µ = 2b in complex Lorentzian plane C2
1

Case (i− b): it can be proved using the same method as in Case (i− a) with minor modification.

(ii):
Conversely, assume that L̃ :M → C2

1 is a Lagrangian H-umbilical surface whose second fundamental form
satisfies (3.4) for some function b 6= 0 with respect to some orthonormal local frame field {e1, e2}. Since M has
real index 1, we divide the proof into two cases: e1 is time-like or e1 is space-like:

Case (ii− a) : e1 is time-like. We may assume

〈e1, e1〉 = −1, 〈e1, e2〉 = 0, 〈e2, e2〉 = 1

Since M is H-umbilical, we have the following Codazzi and Gauss equations (see p.166 in [4] ):

(3.8)

e1µ = (λ− 2µ)ω2
1(e2),

e2λ = (2µ− λ)ω2
1(e1),

e2µ = −3µω2
1(e1),

K = µ(µ− λ).

Since λ = 2µ = 2b 6= 0, from (3.8) we have that b is constant, K = −b2 and ω2
1(e1) = 0. Therefore ∇e1e1 = 0 and

the integral curves of e1 are geodesic inM . Thus, there exists a local cordinate system {s, u} such that e1 = ∂/∂s
and the metric tensor of M is g = −ds2 + f2(s, u)du2. The Gauss curvature K of M is given by ( p.81 in [8] ):

K = fss/f

Therefore we have fss + b2f = 0. Solving this equation yields

f = A(u)cos(bs) +B(u)sin(bs)

for some functions A(u) and B(u). Thus, we have

(3.9) g = −ds2 + r2(u) cos2(bs+ φ(u))du2

where A(u) = r(u) cosφ(u), B(u) = r(u) sinφ(u) and r(u) =
√
A2 +B2. If we set t = t(u) an antiderivative of

r(u), (3.9) becomes

(3.10) g = −ds2 + cos2(bs+ θ(t))dt2

for some function θ(t). From (3.10) we have

(3.11)
∇∂/∂s

∂

∂s
= 0, ∇∂/∂s

∂

∂t
= −b tan(bs+ θ)

∂

∂t
,

∇∂/∂s
∂

∂s
= − b

2
sin(2bs+ 2θ)

∂

∂s
− θ′tan(bs+ θ)

∂

∂t
.

From (3.4), (3.10), (3.11) and Gauss formula we see that the immersion satisfies the following system of PDEs:

(3.12)

L̃ss = 2ibL̃s,

L̃st = ibsec(bs+ θ)ei(bs+θ)L̃t

L̃tt = −ibcos(bs+ θ)e−i(bs+θ)L̃s − θ′tan(bs+ θ)L̃t.

Solving the first two equations in (3.12) we get

(3.13) L̃ = A(t)e2ibs +B(t)

for some C2
1 valued functions A(t), B(t). Differentiating (3.13) yields

(3.14) L̃t = A′(t)e2ibs +B′(t).
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Substituting (3.14) into the second equation of (3.12), we have

(3.15) B′(t) = e−2iθA′(t)

Combining (3.14) and (3.15) gives

(3.16). L̃t = A′(t)(e2ibs + e−2iθ)

After a suitable translation, we find that

(3.17) L̃ = e2ibs(A(t) + C) +

∫ t

0

A′(t)e−2iθ(t)dt

for some constant vector C. Therefore, if we put z(t) = (A(t) + C), we obtain (3.2− a).

(3.18 or 3.2− a) L̃ = e2ibsz(t) +

∫ t

0

z′(t)e−2iθ(t)dt

Substituting (3.18) into the last equation in (3.12) we find

z′′(t)− iθ′(t)z′(t)− b2z(t) = 0

Therefore z(t) is a solution to (3.1). From (3.18) we have

(3.20) L̃s = 2ibe2ibsz(t) L̃t = (e2ibs + e−2iθ)z′(t)

which implies that |L̃s|2 = 4b2|z(t)|2 and |L̃t|2 = 4 cos2(bs+ θ)|z′(t)|2. Comparing these with (3.10) gives
|z(t)|2 = −1/(4b2) and |z′(t)|2 = 1/4. By the uniqueness theorem in [4], the immersion L̃ is congruent to the
immersion L defined in statement (i) if e1 is time-like.

Case (ii− b) : e1 is space-like. We may assume

〈e1, e1〉 = 1, 〈e1, e2〉 = 0, 〈e2, e2〉 = −1

Since M is H-umbilical, we have the following Codazzi and Gauss equations (see p.174 in [4] ):

(3.21)

e1µ = −(λ− 2µ)ω2
1(e2),

e2λ = −(2µ− λ)ω2
1(e1),

e2µ = 3µω2
1(e1),

K = µ(λ− µ).

Since λ = 2µ = 2b 6= 0, from (3.21) we have that b is constant, K = b2 and ω2
1(e1) = 0. Therefore ∇e1e1 = 0 and

the integral curves of e1 are geodesic inM . Thus, there exists a local cordinate system {s, u} such that e1 = ∂/∂s
and the metric tensor of M is g = ds2 − f2(s, u)du2. But the Gauss curvature K of M is given by ( p.81 in [8] ):

K = −fss/f

Therefore we have fss + b2f = 0. The rest of the proof is almost the same as in Case (ii− a). Finally we see that
the immersion L̃ is congruent to the immersion W defined in statement (i) if e1 is space-like.

2

For the existence of solution to (3.1) subject to the two conditions in (i− a) in Theorem 3.2 , we have the
following

Theorem 3.3. For any nonzero number b and any differentiable function θ of one variable defined on interval I , there
exists a C2

1 valued solution to the differential equation:

(3.22) z′′(t)− iθ′(t)z′(t)− b2z(t) = 0

that also satisfies the two conditions: |z(t)|2 = −1/(4b2) and |z′(t)|2 = 1/4 .
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Proof. Let b be a nonzero number b and any differentiable function θ of one variable defined on interval I . Let
D be a simply connected open domain in R2 = {(s, t)|s, t ∈ R} on which the function cos(bs+ θ(t)) is nowhere
zero.

Let M = (D, g) be the Semi -Riemannian 2-manifold equipped with metric tensor g = −ds2 + cos2(bs+
θ(t))dt2. Then its Levi-Civita connection satisfies (3.11).

Now we form a TM -valued symmetric bilinear form such that

(3.23)

σ

(
∂

∂s
,
∂

∂s

)
= 2b

∂

∂s
, σ

(
∂

∂s
,
∂

∂t

)
= b

∂

∂t
,

σ

(
∂

∂t
,
∂

∂t

)
= −b cos2(bs+ θ(t))

∂

∂s
.

Then 〈σ(X,Y ), Z〉 and (∇σ)(X,Y, Z) = ∇Xσ(Y, Z)− σ(∇XY, Z)− σ(Y,∇XZ) are totally symmetric. A direct
computation shows that the curvature tensor of M satisfies R(X,Y )Z = σ(σ(Y,Z), X)− σ(σ(X,Z), Y ). By the
existence theorem (p.155 in [4]), there exists a Lagrangian immersion L̃ :M → C2

1 whose second fundamental
form h = Jσ satisfies (3.4). As in the proof of Theorem 3.2, we see that the immersion also satisfies (3.12). After
solving the first two equations of (3.12) in the same way as in Theorem 3.2, we have

(3.24) L̃ = e2ibsz(t) +

∫ t

0

z′(t)e−2iθ(t)dt+ C

for some C2
1 valued function z(t) and constant vector C. Substituting (3.24) into the last equation of (3.12), we

find that

z′′(t)− iθ′(t)z′(t)− b2z(t) = 0.

Therefore z(t) is a solution to (3.22). Using (3.10) and (3.24), we see that z(t) also satisfies the two conditions:
|z(t)|2 = −1/(4b2) and |z′(t)|2 = 1/4 .

2

Remark 3.1. Using the same method as in Theorem 3.3, we can also prove the existence of solution to (3.1)
subject to the two conditions in (i− b) in Theorem 3.2.

Remark 3.2. Theorem 3.1 and Theorem 3.2 completely classify Lagrangian H-umbilical Surfaces with λ = 2µ in
Complex Lorentzian Plane C2

1

Remark 3.3. From Theorem 3.2 and Theorem 3.3 we see that the class of Lagrangian H-umbilical Surfaces
with λ = 2µ in Complex Lorentzian Plane C2

1 is very large. This is different from higher dimensional cases. If
θ = 0, the immersion becomes a Lagrangian pseudo-Riemannian 2 sphere or a Lagrangian pseudo-hyperbolic
2 space in C2

1 as in [4].
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