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AN IMPROVED CHEN-RICCI INEQUALITY
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Abstract. Oprea proves that Ric(X) ≤ n−1
4

(c + n||H||2) improving the
Chen-Ricci inequality for Lagrangian submanifolds in complex space forms
by using an optimization technique. In this article, we give an algebraic proof
of the inequality and completely classify Lagrangian submanifolds in complex
space forms satisfying the equality, which is not discussed in Oprea’s paper.

1. Introduction

Let Mn be a Riemannian n-manifold and X be a unit vector. We choose an orthonormal
frame {e1, · · · , en} in TxMn such that e1 = X. We denote the Ricci curvature at X by

Ric(X) = K12 + · · ·+ K1n,

where Kij denotes the sectional curvature of the 2-plane section spanned by ei, ej .
In [6] B.-Y. Chen proves the following inequality on Ricci curvature for any n-dimensional

submanifold in Riemannian manifold of constant sectional curvature c:

Ric(X) ≤ n− 1

4
c +

n2

4
||H||2.

This inequality on Ricci curvature is now named as the Chen-Ricci inequality (see [12]).
This inequality is not optimal for Lagrangian submanifolds in complex space forms. Using
an optimization technique, Oprea in [11] proves

Ric(X) ≤ n− 1

4
(c + n||H||2),

which improves the Chen-Ricci inequality for Lagrangian submanifolds in complex space
forms of constant holomorphic sectional curvature c.

In this article, we provide an algebraic proof for the improved Chen-Ricci inequality.
Equality conditions are obtained. We also completely characterize Lagrangian submani-
folds satisfying the equality, which is not discussed in Oprea’s paper.

Theorem 3.1 and Corollary 3.2 improve a couple of results in [6] and [10].
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2. Preliminaries

Let f : M → M̃n be an isometric immersion of a Riemannian n-manifold M into a
Kaehler n-manifold M̃n. Then M is called a Lagrangian (or totally real) submanifold if the

almost complex structure J of M̃n carries each tangent space of M into its corresponding
normal space.

By a complex-space-form M̃n(c) we mean a Kaehler manifold with constant holomor-
phic sectional curvature c.

An n-dimensional submanifold M of a Riemannian manifold (N, g) is called totally
umbilical (respectively, totally geodesic) if its second fundamental form h in N satisfies

h(X, Y ) = g(X, Y )H

(respectively, h ≡ 0), where

H =
1

n
trace h

is the mean curvature vector of M in N . For a totally umbilical submanifold M the shape
operator AH at H has exactly one eigenvalue; moreover, Aξ = 0 for each normal vector ξ
perpendicular to H.

Totally umbilical submanifolds, if they exist, are the simplest submanifolds next to
totally geodesic submanifolds in a Riemannian manifold. However, it is well known that
there exist no totally umbilical Lagrangian submanifolds in a complex-space-form M̃n(c)
with n ≥ 2 except the totally geodesic ones (see [8]).

Consequently, it is natural to look for and to investigate the “simplest” Lagrangian
submanifolds next to the totally geodesic ones in complex-space-forms M̃n(c). In order
to do so B.-Y. Chen introduced the concept of Lagrangian H-umbilical submanifolds (cf.
[5, 7]).

By a Lagrangian H-umbilical submanifold of a Kaehler manifold M̃n we mean a La-
grangian submanifold whose second fundamental form takes the following simple form:

(2.1)
h(e1, e1) = λJe1, h(e2, e2) = · · · = h(en, en) = µJe1,

h(e1, ej) = µJej , h(ej , ek) = 0, j 6= k, j, k = 2, . . . , n

for some suitable functions λ and µ with respect to some suitable orthonormal local frame
field.

We need the following lemmas in section 3.

Lemma 2.1. Let (x1, x2, . . . , xn) be a point in Rn. If x1 + x2 + · · ·+ xn = na, we have

x2
1 + x2

2 + · · ·+ x2
n ≥ na2.

The equality sign holds if and only if x1 = x2 = · · · = xn = a.

Proof. x1 +x2 + · · ·+xn = na is a plane tangent to the sphere x2
1 +x2

2 + · · ·+x2
n = na2 at

the point (a, a, . . . , a). Lemma follows from the fact that the distance between any point
in the plane and the origin is bigger than or equal to the radius of the sphere and the
minimum occurs at the point (a, a, . . . , a). ¤

Lemma 2.2. Let f1 (x1, x2, . . . , xn) be a function in Rn defined by

f1 (x1, x2, . . . , xn) = x1

n∑
j=2

xj −
n∑

j=2

x2
j

If x1 + x2 + · · ·+ xn = 2na, we have

f1 (x1, x2, . . . , xn) ≤ n− 1

4n
(x1 + x2 + · · ·+ xn)2

The equality sign holds if and only if 1
n+1

x1 = x2 = · · · = xn = a.
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Proof. From x1 + x2 + · · ·+ xn = 2na, we have

(x1 − na) + x2 + · · ·+ xn = na.

By Lemma 2.1, we have

(x1 − na)2 + x2
2 + · · ·+ x2

n ≥ na2.

With the equality sign holds if and only if 1
n+1

x1 = x2 = · · · = xn = a. Therefore we have

(
x2

1 − 2nax1 + n2a2) + x2
2 + · · ·+ x2

n ≥ na2

and (
n2 − n

)
a2 ≥ x1 (2na− x1)− x2

2 − · · · − x2
n,

i.e.

x1

n∑
j=2

xj −
n∑

j=2

x2
j ≤

(
n2 − n

)
a2 =

n− 1

4n
(x1 + x2 + · · ·+ xn)2 .

¤

Lemma 2.3. Let f2 (x1, x2, . . . , xn) be a function in Rn defined by

f2 (x1, x2, . . . , xn) = x1

n∑
j=2

xj − x2
1

If x1 + x2 + · · ·+ xn = 4a, we have

f2 (x1, x2, . . . , xn) ≤ 1

8
(x1 + x2 + · · ·+ xn)2 .

The equality sign holds if and only if x1 = a, x2 + · · ·+ xn = 3a.

Proof. Let u = x1, v = x2 + · · ·+ xn − 2a, we have

u + v = x1 + x2 + · · ·+ xn − 2a = 2a.

By Lemma 2.1, we have

u2 + v2 = x2
1 + (x2 + · · ·+ xn − 2a)2 ≥ 2a2.

With the equality sign holds if and only if x1 = a, x2 + · · ·+ xn = 3a. Therefore we have

(x2 + · · ·+ xn − 2a)2 ≥ 2a2 − x2
1

and

(x2 + · · ·+ xn)2 − 4a (x2 + · · ·+ xn) + 4a2 ≥ 2a2 − x2
1

i.e.

(x2 + · · ·+ xn) [(x2 + · · ·+ xn)− 4a] + 2a2 ≥ −x2
1.

Since x1 = 4a− (x2 + · · ·+ xn), we now have

2a2 ≥ x1 (x2 + · · ·+ xn)− x2
1.

Therefore

f2 (x1, x2, . . . , xn) = x1 (x2 + · · ·+ xn)− x2
1 ≤ 2a2 =

1

8
(x1 + x2 + · · ·+ xn)2 .

¤
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3. An Improved inequality for Ricci curvature

Let M̃n(c) be a complex-space-form with constant holomorphic sectional curvature c.

If Mn is a Lagrangian submanifold of real dimension n in M̃n(c). It is well known that

(3.1) AJY X = −Jh(X, Y ) = AJXY

for any tangent vector fields in Mn. Let {e1, · · · , en, Je1, · · · , Jen} be an orthonormal
frame field. Then

(3.2) hi
jk = hj

ik, ∀i, j, k ∈ 1, n,

where hi
jk is the Jei component of the vector h(ej , ek).

Theorem 3.1. Let Mn be a Lagrangian submanifold of real dimension n (n ≥ 2) in a

complex-space-form M̃n(c), x a point in Mn and X a unit tangent vector in TxMn. Then
we have

(3.3) Ric(X) ≤ n− 1

4
(c + n||H||2),

where H is the mean curvature vector of Mn in M̃n(c) and Ric(X) is the Ricci curvature
of Mn at X.

The equality sign holds for any unit tangent vector at x if and only if either
(i) x is a totally geodesic point or
(ii) n = 2 and x is an H-umbilical point with λ = 3µ.

Proof. We fix the point x in Mn. Let X be any unit tangent vector at x. We choose
an orthonormal frame {e1, · · · , en} in TxMn such that e1 = X and {Je1, · · · , Jen} an
orthonormal frame in T⊥x Mn. From Gauss equation we have

R̃(e1, ej , e1, ej) = R(e1, ej , e1, ej)− g̃(h(e1, e1), h(ej , ej)) + g̃(h(e1, ej), h(e1, ej))

or

R̃(e1, ej , e1, ej) = R(e1, ej , e1, ej)−
n∑

r=1

(hr
11h

r
jj − (hr

1j)
2),∀j ∈ 2, n.

Hence we have

(n− 1)
c

4
= Ric(X)−

n∑
r=1

n∑
j=2

(hr
11h

r
jj − (hr

1j)
2).

Therefore

(3.4) Ric(X)− (n− 1)
c

4
=

n∑
r=1

n∑
j=2

(
hr

11h
r
jj − (hr

1j)
2)

≤
n∑

r=1

n∑
j=2

hr
11h

r
jj −

n∑
j=2

(h1
1j)

2 −
n∑

j=2

(hj
1j)

2.

Using (3.2), we have

(3.5) Ric(X)− (n− 1)
c

4
≤ (

n∑
r=1

n∑
j=2

hr
11h

r
jj)−

n∑
j=2

(hj
11)

2 −
n∑

j=2

(h1
jj)

2.

Now we assume

f1

(
h1

11, h
1
22, . . . , h

1
nn

)
= h1

11

n∑
j=2

h1
jj −

n∑
j=2

(h1
jj)

2
,

fr (hr
11, h

r
22, . . . , h

r
nn) = hr

11

n∑
j=2

hr
jj − (hr

11)
2, ∀r ∈ 2, n.
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Since nH1 = h1
11 + h1

22 + . . . + h1
nn, by Lemma 2.2 we have

(3.6) f1

(
h1

11, h
1
22, . . . , h

1
nn

) ≤ n− 1

4n
(nH1)2 =

n(n− 1)

4
(H1)2.

Similarly, by Lemma 2.3, we have for 2 ≤ r ≤ n that

(3.7) fr (hr
11, h

r
22, . . . , h

r
nn) ≤ 1

8
(nHr)2 =

n2

8
(Hr)2 ≤ n(n− 1)

4
(Hr)2.

From (3.5),(3.6) and (3.7), we have

Ric(X)− n− 1

4
c ≤ n(n− 1)

4

n∑
r=1

(Hr)2 =
n(n− 1)

4
||H||2,

which implies (3.3).
Now assume n ≥ 3 and the equality sign of (3.3) holds for any unit tangent vector X

at x. By (3.7), we have Hr = 0 for r ≥ 2 (or simply choose Je1 parallel to H). Combining
this and Lemma 2.3 we have

h1
1j = hj

11 =
nHj

4
= 0, ∀j ≥ 2.

From (3.4), we have h1
jk = 0,∀j, k ≥ 2, j 6= k. From Lemma 2.2, (h1

jk) must be diagonal

with h1
11 = (n + 1)a and h1

jj = a,∀j ≥ 2, where a = H1

2
.

Now if we compute Ric(e2) as we do for Ric(X) = Ric(e1) in (3.4), from the equality
we get hr

2j = h2
jr = 0,∀r 6= 2, j 6= 2, r 6= j. From the equality and Lemma 2.2, we get

h2
11

n + 1
= h2

22 = · · · = h2
nn =

H2

2
= 0.

Since the equality holds for all unit tangent vector, the argument is also true for matrices

(hr
jk). Now finally h2

2j = hj
22 = Hj

2
= 0, ∀j ≥ 3. Therefore matrix (h2

jk) has only two

possible nonzero entries (i.e. h2
12 = h2

21 = h1
22 = H1

2
). Similarly matrix (hr

jk) has only two
possible nonzero entries

hr
1r = hr

r1 = h1
rr =

H1

2
,∀r ≥ 3.

We now compute Ric(e2) as follows:

R̃(e2, ej , e2, ej) = R(e2, ej , e2, ej)− g̃(h(e2, e2), h(ej , ej)) + g̃(h(e2, ej), h(e2, ej)),

so we have

(3.8) R̃(e2, ej , e2, ej) = R(e2, ej , e2, ej)− (
H1

2
)
2

,∀j ≥ 3.

From

R̃(e2, e1, e2, e1) = R(e2, e1, e2, e1)− g̃(h(e2, e2), h(e1, e1)) + g̃(h(e2, e1), h(e2, e1)),

we get

(3.9) R̃(e2, e1, e2, e1) = R(e2, e1, e2, e1)− (n + 1)

(
H1

2

)2

+

(
H1

2

)2

.

By combining (3.8) and (3.9), we get

Ric(e2)− (n− 1)c

4
= (n + 1)

(
H1

2

)2

−
(

H1

2

)2

+ (n− 2)

(
H1

2

)2

= 2(n− 1)

(
H1

2

)2

.

On the other hand from the equality assumption, we have

Ric(e2)− (n− 1)c

4
=

n(n− 1)

4
||H||2 = n(n− 1)

(
H1

2

)2

.
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Therefore, we have

n(n− 1)

(
H1

2

)2

= 2(n− 1)

(
H1

2

)2

Since n 6= 1, we have either H1 = 0 or n = 2.
If H1 = 0, (hr

jk) are all zero and x is a totally geodesic point.
If n = 2, then we have

h(e1, e1) = λJe1, h(e2, e2) = µJe1, h(e1, e2) = µJe2

with λ = 3µ = 3H1

2
.

The converse can be proved by simple computation.
¤

Remark 3.1. Oprea proved inequality (3.3) in [11] using a maximization technique, but did
not discuss the equality case. Here, we prove the inequality using algebraic inequalities.
The benefit of our proof is that we can determine the equality condition in better form. In
this way we can completely characterize Lagrangian submanifolds satisfying the equality
case of the inequality. Theorem 3.1 improves a result in [6, page 38] for Lagrangian
submanifolds.

Example 3.1. It is easy to see that the Whitney 2-sphere in C2 satisfies the equality of
(3.3).

Remark 3.2. By using the same approach, we may extend Theorem 3.1 to Lagrangian
submanifolds in Quaternion projective spaces. This way we improve Theorem 3.1 on page
300 in [10].

From Theorem 3.1, we have the following

Corollary 3.2. Let Mn be a Lagrangian submanifold of real dimension n (n ≥ 2) in a

complex-space-form M̃n(c). If

Ric(X) =
n− 1

4
(c + n||H||2)

for any unit tangent vector X of Mn, then either Mn is a totally geodesic submanifold in
M̃n(c) or n = 2 and Mn is a Lagrangian H-umbilical submanifold of M̃n(c) with λ = 3µ.

Remark 3.3. Lagrangian H-umbilical submanifolds in complex space forms satisfying the
condition λ = 3µ have been completely classified (see [1, 2, 3, 4, 9] and [7, pp. 331-332]
for details).
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