Linear Algebra

Syllabus       Echelon Form and the Row Reduction Algorithm  Highlights from 1.1 & 1.2

SI sessions: Wednesday 6:30 - 7:30 PM, D-113; Thursday 8:00 - 9:00 PM, D-113; Friday 9:00-10:00 AM, D-113; Friday 2:30-3:30 PM, D-120

10 AM class final exam:  Monday, December 10, 10:30 AM
11 AM class final exam:  Wednesday, December 5, 10:30 AM

Homework    Do the Practice Problems for every section.

6.2:  1-21 odd, 23, 24,

4.4:  1-13 odd, 15, 16, 21, 27-32
4.5:  1-17 odd, 19-25
4.6:  1-4, 5-15 odd, 17, 18, 19, 21, 25
5.1:  1-15 odd, 17-27, 31, 32
5.2:  1, 3, 5, 7, 15-17  For problems involving eigenvalues, also find eigenvectors
5.3:  1, 5, 7-19 odd, 21-28, 31, 32
6.1:  1-12, 15-20, 22, 23, 27

 

2.1:  1, 3, 5, 7-12, 15, 16, 20, 21, 24, 27. 28
2.2:  1, 3, 5-11, 13-18, 21, 29, 31
2.3:  1-8, 11-20, 27, 28, 33-36
3.1:  1-4, 9-12, 19-23, 25-30, 37, 38
3.2:  21-25, 29, 31-36, 39, 40
4.1:  1-18, 20, 23, 24
4.2:   1-21 odd, 23-27, 31-34
4.3:   1-10, 12-16, 19, 21-24
2.7 (optional):  3-8

1.1:  1, 2, 7, 9, 13   Use the row reduction algorithm as appropriate
1.2:  1, 2, 3, 5, 7, 11, 13, 17, 19, 21-27
1.3:  1-21 odd, 22-26
1.4:  1-9 odd, 11-14, 17, 19, 21-25, 29-32
1.5:  1-23 odd, 24, 26, 29-32
1.7:  1-11 odd, 15-29, 33-38
1.8:  1-17 odd, 18, 19, 21-22, 24, 25, 29, 31-33
1.9:  1-13, 15, 17, 19, 21, 23-30

 

 

 Tutoring at the SMART Center:   1 - 6 PM Sunday; 9 AM - 7 PM Monday through Thursday; 10 AM - 2 PM Friday.         Norton Hall 174; Sturgis Library 433

 

Some dot product applets:  one   two

Markov Chains

Gil Strang's lectures on Linear Algebra

alkaseltzer problem

Origin of the term eigenvector

©