Chapter 2 - Part 2

The TCP/IP Protocol:
The Language of the Internet
Private IP Addresses

- RFC 1918 designates some class A, B, and C addresses as reserved
 - Designed for use in private networks
 - Internet routers will not forward packets with these destination addresses

- Class A private address range
 - 10.0.0.0 - 10.255.255.255

- Class B private address range
 - 172.16.0.0 - 172.31.255.255

- Class C private address range
 - 192.168.0.0 - 192.168.255.255
Host Addresses

- Each device or interface on a network must have a non-zero host number.

- Special host addresses
 - Host address zero is given to the network wire itself.
 - A host address of all 1s is the direct broadcast address.
 - Packet that should be received by all hosts on the network.

- Number of possible hosts on a network = $2^N - 2$
 - N is the number of host bits.
 - Example: Class B address has 16 host bits.
 - Maximum number of possible hosts is $2^{16} - 2 = 65,536 - 2 = 65,534$.

Summary of Special Addresses

<table>
<thead>
<tr>
<th>Special Address</th>
<th>Network Number</th>
<th>Host Number</th>
<th>Source or Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network address</td>
<td>Specific</td>
<td>All 0s</td>
<td>None</td>
</tr>
<tr>
<td>Direct broadcast address</td>
<td>Specific</td>
<td>All 1s</td>
<td>Destination</td>
</tr>
<tr>
<td>Flooded broadcast address</td>
<td>All 1s</td>
<td>All 1s</td>
<td>Destination</td>
</tr>
<tr>
<td>This host on this network</td>
<td>All 0s</td>
<td>All 0s</td>
<td>Source</td>
</tr>
<tr>
<td>Specific host on this network</td>
<td>All 0s</td>
<td>Specific</td>
<td>Destination</td>
</tr>
<tr>
<td>Loopback address</td>
<td>127</td>
<td>Any</td>
<td>Destination</td>
</tr>
</tbody>
</table>
Determining Available Host Addresses

Determining the Available Host Addresses

<table>
<thead>
<tr>
<th>Network</th>
<th>Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>172101100</td>
<td>00010000</td>
</tr>
<tr>
<td>10101100</td>
<td>00000000</td>
</tr>
<tr>
<td>00000000</td>
<td>00000000</td>
</tr>
<tr>
<td>00000000</td>
<td>00000001</td>
</tr>
<tr>
<td>00000000</td>
<td>00000011</td>
</tr>
<tr>
<td>11111111</td>
<td>11111101</td>
</tr>
<tr>
<td>11111111</td>
<td>11111110</td>
</tr>
<tr>
<td>11111111</td>
<td>11111111</td>
</tr>
</tbody>
</table>

\[2^{N-2} = 2^{16-2} = 65534 \]
Example of Host Addresses

Host Addresses

<table>
<thead>
<tr>
<th>Network</th>
<th>Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16</td>
<td>12.12</td>
</tr>
</tbody>
</table>

Routing Table

<table>
<thead>
<tr>
<th>Network</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.0.0</td>
<td>E0</td>
</tr>
<tr>
<td>10.0.0.0</td>
<td>E1</td>
</tr>
</tbody>
</table>
IP Addresses and Routers

- Datagrams addressed to a specific network are all treated the same regardless of the host ID.
- Routers look at the network number only.
- Routing table will have address entries like:

<table>
<thead>
<tr>
<th>Network</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.0.0</td>
<td>E0</td>
</tr>
<tr>
<td>10.0.0.0</td>
<td>E1</td>
</tr>
</tbody>
</table>

- All packets with destination address having the first two octets as 172.16 will be sent out router interface number E0.
- Routing tables can be kept short by using network addresses.
Addressing Without Subnets

Network 172.16.0.0

172.16.0.1 172.16.0.2 172.16.0.3 172.16.255.253 172.255.254
Addressing Without Subnets

- This example is an Ethernet network having a class B network address with up to 65,634 hosts.

- Ethernets can be divided into smaller collision domains by bridges and switches:
 - Isolates some MAC traffic and MAC broadcasts.
 - IP broadcasts are not controlled and are forwarded to all segments and hosts of bridged and switched networks.
 - Such broadcasts can reduce network performance.
 - Example: ARP broadcasts.
Subnet Addresses

- Large networks are divided into smaller *subnets* to improve network capacity utilization
 - Network administrators determine the subnet plan
- Subnets are isolated by routers
- Broadcasts within each subnet are confined to the subnet
- Routers forward traffic between subnets
- One disadvantage of subnets is that the number of usable host addresses is reduced
Subnet Addresses

Addressing with Subnets

Network 172.16.0.0

172.16.1.0

172.16.2.0

172.16.3.0

172.16.4.0
Subnet Addresses

- In this example, network 172.16.0.0 is divided into 4 subnets
 - 172.16.1.0, 172.16.2.0, 172.16.3.0, and 172.16.4.0
- Third octet is being used to identify the subnet
Subnet Masks

- Network devices use the subnet mask to decide the network number, subnet number and host number

- Subnet mask structure
 - Has a contiguous number of 1s for occupying the bit positions for the network and subnet numbers
 - Followed by a contiguous number of 0s in the bit positions for the host number
 - Subnet bits are taken from the host field of the address

- Subnetting does not affect the class of the IP address
Subnetting Addressing and Routers

Subnet Addressing on Routers

172.16.2.200
172.16.2.2
172.16.2.1
172.16.2.100
172.16.3.1
172.16.3.5

Routing Table

<table>
<thead>
<tr>
<th>Network</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.2.0</td>
<td>E0</td>
</tr>
<tr>
<td>172.16.3.0</td>
<td>E1</td>
</tr>
</tbody>
</table>

Network 2 160

172.16
172.16.2
172.16.3
172.16.2.1
172.16.2.100
172.16.3.1
172.16.3.5
172.16.3.100
172.16.3.150

172.16.2.160
Routing table in this example identifies network by the subnet number.
Subnet Mask Structure

Subnet Mask

IP Address

```
<table>
<thead>
<tr>
<th>Network</th>
<th>Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>172</td>
<td>00</td>
</tr>
</tbody>
</table>
```

Default Subnet Mask

```
<table>
<thead>
<tr>
<th>Network</th>
<th>Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>2551111111</td>
<td>00000000</td>
</tr>
</tbody>
</table>
```

Also Written As “/16” Where 16 Represents the Number of 1s in the Mask.

8-Bit Subnet Mask

```
<table>
<thead>
<tr>
<th>Network</th>
<th>Subnet</th>
<th>Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>255</td>
<td>255</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Also Written As “/24” Where 24 Represents the Number of 1s in the Mask.
Subnet Mask Structure

- Note that the “default” subnet mask has 1s for the network bits only.
- Two popular ways to write IP address and subnet mask are
 - 172.16.0.0 255.255.0.0
 - 172.16.0.0/16
 - /16 implies 16 contiguous 1s starting at left of mask.
Possible Subnet Masks

◆ Convention is to use contiguous bits for masks
◆ No zeros between 1s

Subnet Mask Patterns

<table>
<thead>
<tr>
<th></th>
<th>128</th>
<th>64</th>
<th>32</th>
<th>16</th>
<th>8</th>
<th>4</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

128 192 224 240 248 252 254 255
Using the Subnet Mask

- Receiving router extracts the IP address from the packet and gets subnet mask from receiving interface.
- Router ANDs mask with address to extract network number.
- Rest of address is host number.
Using the Default Subnet Mask

Default Subnet Mask

<table>
<thead>
<tr>
<th>Network Number</th>
<th>Network</th>
<th>Host</th>
<th>Host</th>
<th>Subnet Not In Use — the Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.2.160</td>
<td>10101100 00010000 00000010 10100000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>255.255.0.0</td>
<td>11111111 11111111 00000000 00000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10101100</td>
<td>00010000 00000000 00000000 00000000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Extending Subnet Mask by 8 bits

Extending the Mask by 8 Bits

<table>
<thead>
<tr>
<th>Network</th>
<th>Subnet</th>
<th>Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.2.160</td>
<td>00010000</td>
<td>00000010</td>
</tr>
<tr>
<td>255.255.255.0</td>
<td>11111111</td>
<td>11111111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Network Number</th>
<th>172</th>
<th>16</th>
<th>2</th>
<th>0</th>
</tr>
</thead>
</table>
Extending the Mask by 10 Bits

<table>
<thead>
<tr>
<th>Network Number</th>
<th>Network</th>
<th>Subnet</th>
<th>Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.2.160</td>
<td>10101100</td>
<td>00010000</td>
<td>000000010 10100000</td>
</tr>
<tr>
<td>255.255.255.192</td>
<td>11111111</td>
<td>11111111</td>
<td>11111111 11000000</td>
</tr>
<tr>
<td>10101100</td>
<td>00010000</td>
<td>00000010 10000000</td>
<td></td>
</tr>
</tbody>
</table>

Network: 172, 16, 2, 128
Subnet Masks Not on Octet Boundaries

In this example, how many possible subnetworks are there?

How many possible hosts are there?
Subnet Masks Not on Octet Boundaries

In this example, how many possible subnetworks are there?

- $2^{Ns} - 2 = 2^{10} - 2 = 1022$
- $Ns = \text{number of subnet bits}$

How many possible hosts are there?

- $2^{Nh} - 2 = 2^{6} - 2 = 62$
- $Nh = \text{number of host bits}$
Broadcasts

Three kinds

Flooding
- IP address 255.255.255.255
- Local only, router does not propagate

Directed broadcasts
- 1s in host portion
- Router will forward to network
- Example: network 172.16, subnet 3
 - 172.16.3.255

All subnets broadcast
- 1s in subnet portion and host portion of address
- Example: network 172.16, all subnets
 - 172.16.255.255
Broadcast Addresses

- 172.16.3.0
- 172.16.4.0
- 172.16.1.0
- 172.16.3.255 (Directed Broadcast)
- 255.255.255.255 (Local Network Broadcast)
- 172.16.255.255 (All Subnets Broadcast)
- 172.16.2.0
Identifying IP Addresses

Step 1 Write the 32-bit address in binary notation.

Step 2 Write the 32-bit subnet mask in binary just below it.

Step 3 Draw a vertical line just after the last contiguous subnet mask 1 bit.

Step 4 In a row just below, place all 0s for the remaining free spaces (to the right of the line). This will be the subnet.

Step 5 In the next row, to the right of the line, place all 1s until you reach the 32-bit boundary. This will be the broadcast address.

Step 6 On the right side of the line in the next row, place all 0s in the remaining free spaces until you reach the last free space. Place a 1 in that free space. This will be your first usable address.

Step 7 On the right side of the line in the next row, place all 1’s in the remaining free spaces until you reach the last free space. Place a 0 in that free space. This will be your last usable address.

Step 8 Copy down all the bits you wrote in Step 1 for the bit fields to the left of the line for all four lines.

Step 9 Convert the bottom four rows back to dotted-decimal.
Identifying IP Addresses

Calculating Address Space

<table>
<thead>
<tr>
<th>Address</th>
<th>Binary</th>
<th>Netmask</th>
<th>Subnet</th>
<th>Broadcast</th>
<th>First</th>
<th>Last</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.2.160</td>
<td>10101100</td>
<td>00010000</td>
<td>00000010</td>
<td>10100000</td>
<td>Host</td>
<td>172.16.2.160</td>
</tr>
<tr>
<td>255.255.255.192</td>
<td>11111111</td>
<td>11111111</td>
<td>11111111</td>
<td>11000000</td>
<td>Mask</td>
<td>172.16.2.128</td>
</tr>
<tr>
<td>172.16.2.128</td>
<td>10101100</td>
<td>00010000</td>
<td>00000010</td>
<td>10000000</td>
<td>Subnet</td>
<td>172.16.2.128</td>
</tr>
<tr>
<td>172.16.2.191</td>
<td>10101100</td>
<td>00010000</td>
<td>00000010</td>
<td>10111111</td>
<td>Broadcast</td>
<td>172.16.2.191</td>
</tr>
<tr>
<td>172.16.2.129</td>
<td>10101100</td>
<td>00010000</td>
<td>00000010</td>
<td>11000001</td>
<td>First</td>
<td>172.16.2.129</td>
</tr>
<tr>
<td>172.16.2.190</td>
<td>10101100</td>
<td>00010000</td>
<td>00000010</td>
<td>10111110</td>
<td>Last</td>
<td>172.16.2.190</td>
</tr>
</tbody>
</table>
Identifying IP Addresses

- This method allows you to find the subnet, and the broadcast, first, and last addresses on the subnet.
Subnet Example

IP Host Address: 172.16.2.121
Subnet Mask: 255.255.255.0

<table>
<thead>
<tr>
<th>Network</th>
<th>Network Mask</th>
<th>Subnet Mask</th>
<th>Host Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.2.121:</td>
<td>10101100</td>
<td>00010000</td>
<td>00000010</td>
</tr>
<tr>
<td>255.255.255.0:</td>
<td>11111111</td>
<td>11111111</td>
<td>11111111</td>
</tr>
<tr>
<td>Subnet:</td>
<td>10101100</td>
<td>00010000</td>
<td>00000010</td>
</tr>
<tr>
<td>Broadcast:</td>
<td>10101100</td>
<td>00010000</td>
<td>00000010</td>
</tr>
</tbody>
</table>

Subnet Address = 172.16.2.0
Host Addresses = 172.16.2.1–172.16.2.254
Broadcast Address = 172.16.2.255
Eight Bits Of Subnetting
Class B Subnets

Class B Subnet Table

<table>
<thead>
<tr>
<th>Number of Bits</th>
<th>Subnet Mask</th>
<th>Number of Subnets</th>
<th>Number of Hosts</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>255.255.192.0</td>
<td>2</td>
<td>16,382</td>
</tr>
<tr>
<td>3</td>
<td>255.255.224.0</td>
<td>6</td>
<td>8190</td>
</tr>
<tr>
<td>4</td>
<td>255.255.240.0</td>
<td>14</td>
<td>4094</td>
</tr>
<tr>
<td>5</td>
<td>255.255.248.0</td>
<td>30</td>
<td>2046</td>
</tr>
<tr>
<td>6</td>
<td>255.255.252.0</td>
<td>62</td>
<td>1022</td>
</tr>
<tr>
<td>7</td>
<td>255.255.254.0</td>
<td>126</td>
<td>510</td>
</tr>
<tr>
<td>8</td>
<td>255.255.255.0</td>
<td>254</td>
<td>254</td>
</tr>
<tr>
<td>9</td>
<td>255.255.255.128</td>
<td>510</td>
<td>126</td>
</tr>
<tr>
<td>10</td>
<td>255.255.255.192</td>
<td>1022</td>
<td>62</td>
</tr>
<tr>
<td>11</td>
<td>255.255.255.224</td>
<td>2046</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>255.255.255.240</td>
<td>4094</td>
<td>14</td>
</tr>
<tr>
<td>13</td>
<td>255.255.255.248</td>
<td>8190</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>255.255.255.252</td>
<td>16,382</td>
<td>2</td>
</tr>
</tbody>
</table>
Routing Table

- Routers and workstations maintain routing tables so they know where to send IP packets.
- Given a destination IP address for the packet to be sent, the device looks in its routing table to find which interface the packet must be sent out.
Workstation Routing Table

```plaintext
C:\WINDOWS>netstat -r

Route Table

Active Routes:

<table>
<thead>
<tr>
<th>Network Address</th>
<th>Netmask</th>
<th>Gateway Address</th>
<th>Interface</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>168.28.186.1</td>
<td>168.28.186.54</td>
<td>1</td>
</tr>
<tr>
<td>127.0.0.0</td>
<td>255.0.0.0</td>
<td>127.0.0.1</td>
<td>127.0.0.1</td>
<td>1</td>
</tr>
<tr>
<td>168.28.186.0</td>
<td>255.255.255.192</td>
<td>168.28.186.54</td>
<td>168.28.186.54</td>
<td>1</td>
</tr>
<tr>
<td>168.28.186.54</td>
<td>255.255.255.255</td>
<td>127.0.0.1</td>
<td>127.0.0.1</td>
<td>1</td>
</tr>
<tr>
<td>168.28.255.255</td>
<td>255.255.255.255</td>
<td>168.28.186.54</td>
<td>168.28.186.54</td>
<td>1</td>
</tr>
<tr>
<td>224.0.0.0</td>
<td>224.0.0.0</td>
<td>168.28.186.54</td>
<td>168.28.186.54</td>
<td>1</td>
</tr>
<tr>
<td>255.255.255.255</td>
<td>255.255.255.255</td>
<td>168.28.186.54</td>
<td>168.28.186.54</td>
<td>1</td>
</tr>
</tbody>
</table>

Active Connections

<table>
<thead>
<tr>
<th>Proto</th>
<th>Local Address</th>
<th>Foreign Address</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>Tigger:1146</td>
<td>unknown.Level3.net:80</td>
<td>CLOSE_WAIT</td>
</tr>
</tbody>
</table>
```

C:\WINDOWS>
Interpreting the Table

- **Network address**
 - **Destination address**
 - **Four types**
 - **Host address**
 - Route to a single, specific destination IP address
 - **Subnet address**
 - Route to a subnet
 - **Network address**
 - Route to an entire network
 - **Default gateway**
 - Route used when there is no other match
Interpreting the Table

- **Netmask**
 - Defines the portion of the network address that must match in order for that route to be used

- **Gateway address**
 - Where the packet must be sent
 - Can be the local network card address or the address of the gateway (router) on the local subnet

- **Interface**
 - Address of the network card through which the packet should be sent
Interpreting the Table

- **Metric**
 - **Number of hops to the destination**
 - Anything on the local subnet is one hop
 - Each router crossed adds one to the metric
Address Resolution Protocol (ARP)

- When a host wants to send an IP packet, it must be encapsulated in a frame that includes the destination MAC address
 - The host does not usually know the destination address
- ARP is used to find a physical (MAC) address when the IP address is known
- Defined in RFC 826
Basic ARP Operation

To find the MAC address,

1. The sending host broadcasts an ARP request to all entities on its network

2. The entity with the IP address matching the one in the request sends an ARP Reply directly to the requesting host (unicast)
 - The reply contains the relying host’s MAC address in its source address field
 - The original sending host now knows the MAC address of the entity it wants to send the packet to
Basic ARP Operation

3. If there is no reply to the request, the sending host sends the data packet to the default gateway router
 - It may have to send an ARP request to get the router’s MAC address
 - The packet sent to the router has as its destination IP address that of the desired destination entity but the destination MAC address is now the router
 - The router must now determine the next place to send the packet
 - If the destination network is directly attached to the router, it will send an ARP request to that network to get the final destination MAC address
 - If the network is not directly attached, the packet is sent to the next-hop router
ARP Operation

Figure 8.2 ARP operation

a. ARP request is broadcast

b. ARP reply is unicast

Domain Name Service (DNS)

- Users find it easier to remember names rather than addresses
 - Example:
 - www.spsu.edu identifies the SPSU web server
 - Your browser still needs an IP address to communicate with it, even for the first time
 - Your computer sends a request to a domain name server to translate the name into an IP address
Domain Name Service (DNS)

- For some instances a fixed lookup table residing on your computer is sufficient
 - Example:
 - The name localhost is stored in a table and has corresponding address 127.0.0.1

- The purpose of DNS is to resolve symbolic names into IP addresses
DNS Components

Three elements
- Domain name space
- Name servers
- Resolvers
Computer Names

- Names have alphanumeric segments separated by periods
- Number of segments is variable
- Names are hierarchical
 - Most significant part is on right
 - This is the *Top Level Domain* (TLD)
Domain Names

- The domain part of the name is all segments but the left-most
- TLD of the name is determined by DNS
 - com is commercial organization
 - edu is educational institution
 - gov is government
 - mil is military
- Leftmost part is the computer name
Uniqueness of Name

- Organizations apply for names in a top-level domain:
 - spsu.edu
 - yahoo.com
 - slb.com

- Organizations determine their own internal structure
 - anadrill.slb.com

- All names are unique
Geographic TLDs

- Geographic registration is also used
- Often seen in addresses for foreign countries
 - ac.uk used in United Kingdom
 - ac stands for academic
DNS Structure

- Hierarchical tree structure
 - Base is root
 - Immediately above root are Top Level Domains
 - Above TLDs are subdomains
 - Eventually, leaves of tree represent hosts
DNS Structure

FIGURE 2.9
Domain name space
(partial view).

![DNS Structure Diagram](image-url)
Who Runs Top-Level Domain Servers?

- The Internet Corporation for Assigned Names and Numbers (ICANN) delegates responsibility for handling root domains

 - “ICANN has been recognized by the U.S. and other governments as the global consensus entity to coordinate the technical management of the Internet's domain name system, the allocation of IP address space, the assignment of protocol parameters, and the management of the root server system” – ICANN Fact Sheet (www.icann.org)

- Example: Network Solutions (now Verisign) handles .com assignments

- Soon to change, ICANN enabling competition
Who Runs Top-Level Domain Servers?

- TLD name servers know the IP addresses of DNS servers for every second-level domain
- An organization supplies the name of its second-level DNS server when registering for a second-level domain
 - Example: SPSU is a second-level domain and the .edu top level DNS server knows its IP address
 - Once you have a registered 2nd-level domain name, you are responsible for handling your subdomain naming structure
Domain Name & Tree Structure

◆ A domain name of an institution is formed by following a path starting at the institution’s subdomain and ending at the root

Example:
◆ Start at SPSU’s ECET department
◆ Next subdomain is SPSU
◆ TLD is edu
◆ Resulting domain name is ecet.spsu.edu

Add host name to domain and you get the Fully Qualified Domain Name (FQDN)
◆ The ECET department’s web server computer name is www, so we have the FQDN www.ecet.spsu.edu
Example Domain Structure in an Organization

Name Servers

- DNS name servers store information describing the domain name space
- Servers have authority over regions of the domain name space called zones
- Zones may include a branch and all of its subordinate branches
DNS Client-Server Model

Most organizations have a domain name server
- DNS server has a database of names
- Server has links to higher-level servers

An application (client) requests address translation from DNS server
- Sends DNS request message

Server either responds with IP address or sends request to next higher server
DNS Server Hierarchy

- Name servers do not store all of the existing names in their data base
 - They depend on higher-level and lower-level servers who may have the desired name/address listing in their data base
- A root server is responsible for TLDs
 - Knows how to reach servers that handle requests for lower-level addresses (slb.com, spsu.edu)
- Next lower level DNS server knows how to find servers below it
- Company can use one or more DNS servers
 - Multiple servers can balance load
Example: An Organization’s DNS Zone Hierarchy

Example: An Organization’s DNS Zone Hierarchy

- In previous figures, the .com root server must know the address of the foobar.com DNS server
 - In the top figure, the foobar.com server must know the address of the candy.foobar.com server
 - In the lower figure, the foobar.com server must know the address of the walnut.candy.foobar.com server
- All DNS servers in foobar.com must know the address of a root server
Resolving Names

- Name resolution means that a name is resolved to an address
- Resolver software runs on the client computer and interfaces between the user application and the DNS server
 - Resolver knows address of its local DNS server
 - Sends *DNS request, or query* to server
 - Can cache addresses received from name servers
Resolving Names

- Server sends *DNS reply or answer*
 - If server does not have address, it sends request to next higher server
- Each DNS server knows address of a root server
DNS Request/Reply Sequence

In figure, screen captures are reversed.
Dynamic Host Control Protocol (DHCP)

- Client-server based system for assigning IP address information to hosts
- Greatly simplifies IP address management in organizations
- Three modes of operation
 - Manual entry
 - Administrator associates a given host to a given IP address on DHCP server
 - Dynamic
 - "Lease" address configuration for a period of time
 - Automatic
 - "Lease" address configuration indefinitely
In dynamic and automatic modes, DHCP servers have a range of addresses that it can supply to hosts.

- When a host boots, it requests IP address information from the DHCP server.
- The server assigns an address from its range.
 - In dynamic mode, the host loses its configuration after a fixed time period and must request another configuration when it needs it.
 - It also loses it when it is shut down.
 - In automatic mode, the host does not lose its configuration until it shuts down.
Diagnostic Tools

- **Ping**
 - used to transmit an ICMP echo request to a remote host and wait for a reply
 - Used to see that a remote host is running and its TCP/IP protocol is properly configured
Diagnostic Tools

Traceroute

- Used to trace the path to a destination host
- Implemented by sending UDP IP packets with increasing time-to-live TTL values, starting at 1, until destination is reached
 - Each intermediate router must decrement TTL by 1
 - If TTL reaches 0, that router must send an ICMP response back to the sender
- Resulting display shows round-trip time to each intermediate node
- Each UDP packet is sent 3 times with same TTL, resulting in three different responses from each node
Diagnostic Tools

- **Netstat**
 - Displays network and interface statistics for local host
SLIP and PPP

- **Serial Line IP (SLIP)**
 - A data link protocol created to transport IP over a serial line
 - Used in dial-up circuits
 - Not very robust
 - Replaced by PPP

- **Point-to-Point Protocol (PPP)**
 - Transports multi-protocol packets over various types of point-to-point links