Structures and repeated
 reasoning: Keys to decimal number teaching and learning

2017 NCTM Annual Meeting
Tad Watanabe
Kennesaw State University
twatanab@kennesaw.edu
http://ksuweb.kennesaw.edu/~twatanab/

Kennesaw

State university
College of Science and Mathematics
Department of Mathematics

Fractions and Decimal Numbers

Grade	Fractions	Decimal Numbers
$1 \& 2$	Foundations - partitioning of shapes (1.G \& 2.G)	Formal introduction - focus on unit fractions (3.NF)
4	Equivalent fractions $+/-$: like denominators \times : by whole numbers (4.NF)	Decimal numbers as "decimal notation" of fractions $-10^{\text {th }}$ and $100^{\text {th }}(4 . N F)$
5	$\times:$ by fractions $\div:$ whole number \div unit fraction unit fraction \div whole number $(5 . N F)$	Decimal numbers through $1000^{\text {th }}$ $(5 . N B T)$ $+/-/ \times / \div$: through 100th With concrete models, drawings, strategies based on place value, properties of operations; relate strategy to written method (5.NBT)
6	$\div:$ fraction \div fraction Invert-and-multiply algorithm (6.NS)	Fluency with the standard algorithms (6.NS)

Fractions and Decimal Numbers

Decimal numbers have the characteristics of both fractions and whole numbers.

- Decimal fractions: fractions with denominators of powers of 10
- Extending decimal numeration system.

Teaching and learning of decimal numbers should take advantage of characteristics familiar to students.

Fractions and Decimal Numbers

- Fractions and decimal numbers are two notation systems for numbers that require units less than one.
, Numbers are expressed in terms of units.
- Units for decimal numbers: powers of 10
- Units for fractions: unit fractions
- $\frac{1}{D}=$ one of D equal partitioning of 1

Structure of Decimal Numeration

Positional: where a numeral is written matters.

Positional and Non－positional System

$$
\begin{array}{c|c}
5 & \text { 㕶 } \\
55 & \text { 五十五 } \\
505 & \text { 五百五 } \\
5005 & \text { 五千五 } \\
50005 & \text { 五万五 }
\end{array}
$$

Positional and Non－positional System

5	浯
55	五士五
505	五百五
5005	五千五
50005	五万五

Structure of Decimal Numeration

- Positional: where a numeral is written matters.
, Each position (place) represents a specific value.
- Adjacent positions (places) are always in 1 to 10 relationship - 10 of a smaller units make up 1 of the next larger unit.

3 Write the number that goes in each of the \square on the right.
Also, write a number in each of the \bigcirc.

Tokyo Shoseki (2010) Gr. 4 p. A94

Multiplication/division by 10

3
If you multiply 2510 times, then another 10 times, what number will you get?

How many times as much will it be if you multiply a number 10
times and then another 10 times?

$$
\begin{aligned}
& 200 \xrightarrow{\text { Divided by } 10} 20 \\
& 200 \div 10=\square
\end{aligned}
$$

Multiplication/division by 10

2
Investigate what happens to 3.75 when it is made 10 times and 100 times as much.

Investigate what happens to 25.7 when it is made $\frac{1}{10}$ and
$\frac{1}{100}$ as much.

Contrasting fractions and decimal numbers

The Differences Between the Structure of Whole I Decimal Numbers and Fractions

The place values for whole numbers and decimal numbers are always 10 times or $\frac{1}{10}$ of the adjacent place values.

$$
\begin{aligned}
& \text { "The place value is } \frac{1}{10} \text { of the adjacent place" } \\
& \text { means that the new place value is one of } 10 \\
& \text { equally divided parts of the original place } \\
& \text { value, doesn't it? }
\end{aligned}
$$

On the other hand, fractions are created to express amounts that are equally divided. Therefore, unlike whole numbers and decimal numbers the number of equal parts in a fraction does not have to be just 10 .
Fractions were already being used in Egypt and Babylon (the southern part of today's Iraq) more than 4000 years ago, much earlier than decimal

Fractions were already being used in Egypt and Babylon (the southern part of today's Iraq) more than 4000 years ago, much earlier than decimal numbers. In Egypt, fractions with I as the numerator, such as $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$, $\frac{1}{5}, \ldots$ were used to express one of $2,3,4,5, \ldots$ equal parts.

In Babylon, they used the denominator of 60 and different numbers for the numerator. 60 was useful because it can be divided evenly by many whole numbers, and divided into equal parts in many different ways.

Shinji

So we can see that the idea of dividing evenly is used differently in whole numbers, decimal numbers, and in fractions.

Relative Size of Numbers

With the decimal numeration system, a number is represented as accumulation of units (powers of 10).

- 23.45 is made of
- 2 units of 10
- 3 units of 1
- 4 units of 0.1
- 5 units of 0.01

Relative sizes of 0.67

- 6 units of 0.1 , and
- 7 units of 0.01

Or

- 67 units of 0.01 Or
- 670 units of 0.001 Or
- 6700 units of 0.0001 Or ...

Relative sizes of

$\frac{2}{3}$ is made of 2 units of $\frac{1}{3}$ or
$\cdot \frac{2}{3}$ is made of 4 units of $\frac{1}{6}$ or
$\cdot \frac{2}{3}$ is made of 6 units of $\frac{1}{9}$
or ...

Structure of Decimal Numeration

- Positional: where a numeral is written matters.
Each position (place) represents a specific value.
- Adjacent positions (places) are always in 1 to 10 relationship - 10 of a smaller units make up 1 of the next larger unit.
, Each position must have one and only one numeral.
- 0 as a place holder
- Exceptions: leading 0's for whole numbers and trailing 0's for decimal numbers

One and only one numeral in each place

3 What is the amount of water if there are nine 0.IL?
Also, what is the amount of water if there are ten $0 . I L$?

Tokyo Shoseki (2010) Gr. 3 p. B15
2
What is the length of $\operatorname{six} \frac{1}{5} \mathrm{~m}$, seven $\frac{1}{5} \mathrm{~m}$, and so on?
? Let's think about how to express fractions greater than 1 . The length of $\operatorname{six} \frac{1}{5} \mathrm{~m}$ is expressed as $\frac{6}{5} \mathrm{~m}$.

Regularity in Repeated Reasoning

Addition and subtraction of decimal numbers
Thinking in terms of units other than 1

3 Addition and Subtraction of Decimal Numbers

How many 0.1 L are in 0.5 L and 0.3 L each?
Explain how the calculation on the right was done.

$$
0.8+0.2=1
$$

A big bottle contains 0.5 L of juice and a small bottle contains 0.3 L of juice.
How much juice is there altogether?

2 Think about how to calculate $0.4+0.7$.

If you think of 0.1 as a unit, what kind of calculation does $0.4+0.7$ become?

There is 0.8 L of juice. She drank 0.3L of it. How many L of juice are left?
Math
Sentern
4. Sentence
? Let's think about how to calculate.

How many 0.IL are in
0.8 L and 0.3 L each?

Explain how the calculation on the right was done.

0.8L and 0.3L each?

$$
1-0.4=0.6
$$

Think about how to calculate 1.4-0.6.

If you think of 0.1 as a unit, what kind of calculation does $1.4-0.6$ become?

There is $\frac{3}{10} L$ of juice in a carton and $\frac{2}{10} \mathrm{~L}$ in a bottle. How much juice is the altogether in L?

Write a math sentence.
Math
Senkno

Let's investigate to find out if we can do addition with fractions.

Let's think about how to calculate $\frac{3}{10}+\frac{2}{10}$.

Think about it by looking at the fractions as how many $\frac{1}{10} \mathrm{~L}$.

\square of $\frac{1}{10} L$
$\frac{3}{10}$
$+\quad \frac{2}{10}$
$=$

\square of $\frac{1}{10} \mathrm{~L}$

There is $\frac{4}{5} L$ of juice. If a girl drinks $\frac{1}{5} L$ of juice, how much juice will be left in L?

Write a math sentence.

\qquad

Let's investigate to find out if we can do subtraction with fractions.
Let's think about how to
calculate $\frac{4}{5}-\frac{1}{5}$.

$$
\frac{4}{5}-\frac{1}{5}=\square \quad \begin{aligned}
& \text { If you think about it with } \\
& \frac{1}{5} L \text { as a unit... }
\end{aligned}
$$

Emphasizing repeated reasoning

3
There are 60 pieces of colored paper. If we use 20 pieces, how many will be left?

If we think about it in bundles of 10...

Tokyo Shoseki (2010) Gr. 1 p. 128

4 Think about how to calculate 600-200.

Explain the calculation by thinking the same way as (3).

$$
600-200=\square
$$

Multiplication of Decimal Numbers

- Multiplying decimal numbers by whole numbers in Grade 4
, Multiplying by decimal numbers in Grade 5

CCSS 4.NF.4: multiplying fractions by whole numbers
, CCSS 5.NF.4: multiplying by fractions

Multiplying decimal numbers by whole numbers

, Continue to make use of decimal units

cartons of juice. How much juice is there altogether?

Tokyo Shoseki (2010) Gr. 4
pp. B73 \& B74

What math sentence should we write?

Multiplying decimal numbers by whole numbers

- Make use of property of multiplication

The product of 0.3×6 can be calculated by first making 0.310 times as much, then by calculating 3×6, and then by dividing the product by 10 .

Tokyo Shoseki (2010) Gr. 4 p. B74

The answer for 5×30 is the same as 10 times as much as 5×3. Therefore, the answer is the same as placing a 0 to the right of 15 .

```
5\times3=15
    \downarrow}\mp@subsup{\downarrow}{}{10+mam
5\times30=150
```

When the number in the
multiplier becomes 10
times as much. the answer also becomes 10 times as much.

Multiplying by decimal numbers

- Making sense of multiplication by decimal numbers first

Tokyo Shoseki (2010) Gr. 5 pp. A31 \& A32

1
I meter of ribbon costs 80 yen. I bought 2.3 m of the ribbon, how much was the cost?

I thought we could think of the lengths as if they were whole numbers.

Even when the length of ribbon is a decimal number, we can use a multiplication sentence to find the total cost, just like we did when the lengths were whole numbers.

Multiplying by fractions

Making sense of multiplication by fractions first

Let's think about what math sentence we should write.

Math
Sensence
4

Takumi

Shinji
Explain the reason for your math sentence.

Tokyo Shoseki (2010) Gr. 6 p. A34

Ways to multiply by decimal numbers

, Thinking in terms of decimal units , Using property of multiplication

Takumi

2.3 m is made up of 230.1 m pieces. So, we can find the price for 0.1 m , and then find what 23 times that price is.

- Price of $0.1 \mathrm{~m} \cdots 80 \div 10$
- Cost of $2.3 \mathrm{~m} \cdots(80 \div 10) \times 23$

$$
\begin{aligned}
80 \times 2.3 & =80 \div 10 \times 23 \\
& =\square
\end{aligned}
$$

\square

If the length of the ribbon becomes 10 times as long, the cost will also be 10 times as much.

```
80\times2.3=\square
    | < 10| \ 10) \div10
80\times23=1840
```


- Cost of $23 \mathrm{~m} \cdots 80 \times 23$
- Cost of $2.3 \mathrm{~m} \cdots(80 \times 23) \div 10$
$80 \times 2.3=80 \times 23 \div 10$
\square
\square yen

Ways to multiply by fractions

Thinking in terms of fraction units Using property of multiplication

First，find the area of boards you can paint with $\frac{1}{3} \mathrm{dL}$ ，and then double that amount．
double that amount．
〈Area we can paint with IdL〉 〈Area we can paint with $\frac{1}{3} d \mathrm{dL}$ ）〈Area we can paint with $\frac{2}{3} \mathrm{dL}$ ．

$$
\begin{aligned}
\frac{4}{5} \times \frac{2}{3} & =\left(\frac{4}{5} \div 3\right) \times 2 \\
& =\frac{4}{5 \times 3} \times 2 \\
& =\frac{\square \times \square}{\square \times \square} \\
& =\square
\end{aligned}
$$

Hiroki

If we change $\frac{2}{3}$ into a whole number，we can calculate it． We make the multiplier 3 times as much，and then divide the product by 3 ．

$$
\begin{aligned}
\frac{4}{5} \times \frac{2}{3} & =\frac{4}{5} \times\left(\frac{2}{3} \times \frac{1}{1}\right) \div 3 \\
& =\frac{4}{5} \times 2 \div 3 \\
& =\frac{\square \times \square}{\square \times \square} \\
& =\square
\end{aligned}
$$

$$
\begin{aligned}
& 80 \times 2.3=184 \\
& 1 \times 10 \downarrow \times 10 \\
& 80 \times 23=1840
\end{aligned} \div 10
$$

It＇s the same thinking we used with decimal numbers， isn＇t it？

Division of decimal numbers

Dividing decimal numbers by whole numbers in Grade 4
, Dividing by decimal numbers in Grade 5

Dividing decimal numbers by whole numbers

- Making use of context
- Making use of decimal units

We bought 3.6 L of water. If we share this water equally among 3 people, how much water will each person get?

What math sentence should we write?

Math

Math
Sentencs
-

Can you explain the idea behind why you wrote this math sentence?

Explain the following two students' ideas.

Answer

Tokyo Shoseki (2010) Gr. 4 pp. B80 \& B81

Dividing decimal numbers by whole numbers

What if the dividend is not evenly divisible?
Remainder

- Dividing on

Let's think about the size of the remainder when we divide decimal numbers.

If we share 6 L of juice equally among 4 people, how much juice will each person get?

6 L is made of 60 0. IL, so, ...

Let's think about how to continue dividing with the division algorithm.

Dividing fractions by whole numbers

You can paint $\frac{4}{5} \mathrm{~m}^{2}$ of boards with 2 dL of paint.
How many m^{2} can you paint with $I \mathrm{dL}$ of this paint?

What math sentence do we need to write?

Sentence
Can you explain your answer?
? Let's think about how to calculate.

> I wonder if we can change $\frac{4}{5}$ into another fraction that has a numerator that can be divided by $3 \ldots$

Tokyo Shoseki (2010) Gr. 5 pp. B91 \& B92

Dividing by decimal numbers

Making sense of multiplication by decimal numbers first

We bought 2.5 m of ribbon. The cost was 300 yen. How much does In of this ribbon cost?

? Let's think about what math sentence we should write. $1 \begin{aligned} & \text { Math } \\ & \text { Sentence }\end{aligned}$

Length we
bought (m)
:---:

Since 2.5 times as much of the price for 1 m is 300 yen. ...

$\square \times 2.5=300$
$\square=300 \div 2.5$

If we say the price for 1 m is \square yen, the math sentence will be $\square \times 2.5=300$. Since we are trying to find the value of \square. I thought it should be $300 \div 2.5$.

Even when the length of ribbon is a decimal number, we can use division to find the price for In just like we did with whole numbers.

Ways to divide by decimal numbers

, Thinking in terms of decimal units
 , Using property of division

Miho
2.5 m is made up of 25 pieces of 0.1 m .

- Price for $0.1 \mathrm{~m} \cdots \cdots 300 \div 25$
- Price for Im $\cdots \cdots(300 \div 25) \times 10$
$300 \div 2.5=300 \div 25 \times 10$
$=\square$
Answer \square

Hiroki

If the length of the ribbon becomes
10 times as long, the cost will be
10 times as much, but the price for
 Im does not change.

[^0]
Ways to divide by fractions

, Thinking in terms of fraction units
 - Using property of division

Tokyo Shoseki (2010) Gr. 5 p. A47

Final Thoughts

In order for students to look for and make use of structures in learning of decimal numbers, structures must become a focus in their learning of whole numbers (and fractions).

- It is helpful to have a curriculum flow that makes use of structures as a theme.

Final Thoughts

In order for students to look for and express regularity in repeated reasoning with decimal numbers, reasoning must become a focus in mathematics lessons.
Tasks for lessons must be carefully chosen so that desired reasoning is more likely to arise from students.

Thank

[^0]: - Cost of $25 \mathrm{~m} \cdots \cdots 300 \times 10$
 - Price for Im.… $(300 \times 10) \div 25$ $300 \div 2.5=300 \times 10 \div 25$
 $=\square$
 Answer \square yen

