From Equal Groups to Proportional Reasoning Multiplicative Comparison as Key Structure

Tad Watanabe twatanab@kennesaw.edu

STATE UNIVERSITY
College of Science and Mathematics
Department of Mathematics

Ratios \& Proportional Relationships

Grade 6 Overview
(1) Connecting ratio and rate to whole number multiplication and division...
By viewing equivalent ratios and rates as deriving from, and extending, pairs of rows (or columns) in the multiplication table, and by analyzing simple drawings that indicate the relative size of quantities, students connect their understanding of multiplication and division with ratios and rates.
Thus students expand the scope of problems for which they can use multiplication and division to solve problems, and they connect ratios and fractions.

Multiplication/Division

- Multiplication and division in equal group situations (3.OA.A. 1 \& 3.OA.A.2)
- Multiplication in array/area situations (3.MD.C)
- Multiplication and division in comparison situation (4.OA.A. 1 \& 4.OA.A.2)
, Multiplication as scaling (5.NF.B.5)
, Division as?
- 5.NF.B.7.a: Interpret division of a unit fraction by a nonzero whole number, and compute such quotients.
- 5.NF.B.7.b: Interpret division of a whole number by a unit fraction, and compute such quotients.

	Unknown Product	Group Size Unknown ("How many in each group?" Division)	Number of Groups Unknown ("How many groups?" Division)
	$3 \times 6=$?	$3 \times ?=18$, and $18 \div 3=$?	$? \times 6=18$, and $18 \div 6=$?
	There are 3 bags with 6 plums in each bag. How many plums are there in all?	If 18 plums are shared equally into 3 bags, then how many plums will be in each bag?	If 18 plums are to be packed 6 to a bag, then how many bags are needed?
Equal Groups	Measurement example. You need 3 lengths of string, each 6 inches long. How much string will you need altogether?	Measurement example. You have 18 inches of string, which you will cut into 3 equal pieces. How long will each piece of string be?	Measurement example. You have 18 inches of string, which you will cut into pieces that are 6 inches long. How many pieces of string will you have?
Arrays, ${ }^{4}$ Area ${ }^{5}$	There are 3 rows of apples with 6 apples in each row. How many apples are there?	If 18 apples are arranged into 3 equal rows, how many apples will be in each row?	If 18 apples are arranged into equal rows of 6 apples, how many rows will there be?
	Area example. What is the area of a 3 cm by 6 cm rectangle?	Area example. A rectangle has area 18 square centimeters. If one side is 3 cm long, how long is a side next to it?	Area example. A rectangle has area 18 square centimeters. If one side is 6 cm long, how long is a side next to it?
	A blue hat costs $\$ 6$. A red hat costs 3 times as much as the blue hat. How much does the red hat cost?	A red hat costs $\$ 18$ and that is 3 times as much as a blue hat costs. How much does a blue hat cost?	A red hat costs $\$ 18$ and a blue hat costs $\$ 6$. How many times as much does the red hat cost as the blue hat?
Compare	Measurement example. A rubber band is 6 cm long. How long will the rubber band be when it is stretched to be 3 times as long?	Measurement example. A rubber band is stretched to be 18 cm long and that is 3 times as long as it was at first. How long was the rubber band at first?	Measurement example. A rubber band was 6 cm long at first. Now it is stretched to be 18 cm long. How many times as long is the rubber band now as it was at first?
General	$a \times b=$?	$a \times ?=p$, and $p \div a=$?	$? \times b=p$, and $p \div b=$?

A blue hat costs \$6. A red hat

 costs 3 times as much as the blue hat. How much does the red hat cost?Measurement example. A rubber band is 6 cm long. How long will the rubber band be when it is stretched to be 3 times as long?

A red hat costs $\$ 18$ and that is 3 times as much as a blue hat costs. How much does a blue hat cost?

Measurement example. A rubber band is stretched to be 18 cm long and that is 3 times as long as it was at first. How long was the rubber band at first?

A red hat costs $\$ 18$ and a blue hat costs $\$ 6$. How many times as much does the red hat cost as the blue hat?

Measurement example. A rubber band was 6 cm long at first. Now it is stretched to be 18 cm long. How many times as long is the rubber band now as it was at first?
4.OA.A. 1 Interpret a multiplication equation as a comparison, e.g., interpret $35=5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations.
4.OA.A.2 Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison.

A blue hat costs $\$ 6$. A red hat costs 3 times as much as the blue hat. How much does the red hat cost?

Measurement example. A rubber band is 6 cm long. How long will the rubber band be when it is stretched to be 3 times as long?

A red hat costs $\$ 18$ and that is 3 times as much as a blue hat costs. How much does a blue hat cost?

Measurement example. A rubber band is stretched to be 18 cm long and that is 3 times as long as it was at first. How long was the rubber band at first?

A red hat costs $\$ 18$ and a blue hat costs $\$ 6$. How many times as much does the red hat cost as the blue hat?

Measurement example. A rubber band was 6 cm long at first. Now it is stretched to be 18 cm long. How many times as long is the rubber band now as it was at first?
3.OA.A. 1 Interpret whole-number quotients of whole numbers, e.g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each.
4.OA.A.* Interpret whole-number quotients of whole numbers, e.g., interpret $56 \div 8$ as the base number to which 56 is compared, or as a number of times as much 56 is as 8.

Multiplicative Comparison in Japanese curriculum

- Grade 2: Introduction of multiplication

-Multppactaton (1) Let's Think about New Calculations
 I

There are 5 children in each train car and there are 3 train cars. There are 15 children altogether. You can write this using the following math sentence.

$$
5 \times 3=15
$$

Five multiplied by three equals fifteen.

Write a math sentence for the number of people riding of page 5 . Write the math sentence just like we did above.

Calculations like 5×3 and $2 \times$ 6 are called multiplication.

What is the length of two 3 cm strips of paper put together?

If a piece of tape is as long as two 3 cm strips of paper put together, we can say the tape is 2 times as long as the 3 cm tape.
You can use the multiplication math sentence 3×2 to find the length that is two times as long as 3 cm .

If a piece of tape is as long as three 3 cm strips of paper put together, how many times as long is it as a 3 cm strips of paper? How long is the tape?

3 times or 4 times as much as an amount is the same as 3 or 4 sets of the amount put together. I time as much is the same as the given amount.

6
What is the height of the stack of boxes if it is 4 times as high as 2 cm ? Write a multiplication math sentence, and then find the answer.

Grade 3: Introduction of division

Let's Think about New Kinds of Calculations

Think about what Emi is saying.

1 Calculations for Finding How Many for I Person

1
There are 12 cookies. If they are divided evenly among 3 people, how many cookies will I person get?

?
Let's think about a calculation that finds how many for I person.

1. Investigate the amount for I person using counters.

2
Calculations for Finding the Number of People We Can Divide Something into

12 pastries just came out of the oven.

? Let's think about what kind of calculation we need to use to find how many people we can divide something into.

There are 12 pastries. If we give 3 pastries to each person, how many people can share the pastries?

Use counters to investigate how many people can get pastries.

Division as the operation to find how many times as much

The length of a tug of war rope is 36 m . The length of a jump rope is 9 m .
How many times as long is the tug of war rope as the jump rope?

Let's think about what kind of calculation we need to use to find how many times as much.
1 Look at the diagram below and think about it.

To find how many times as much, you can use division.

During the team jump rope competition, Chiemi's team jumped 21 times and Takashi's team jumped 7 times.
How many times as much did Chiemi's team jump as
Takashi's team?

Grade 4: Division

4 Calculation with Times as Much

An adult whale is 15 m long, and its calf is 3 m long.
How many times as long is the adult whale as the calf?

Think about it using the diagram below.

Write a math sentence, and then find the answer.

5 times means that if we consider 3 m as $1,15 \mathrm{~m}$ corresponds to 5 .

If we say I piece is 3 m long, 15 m is
the same as 5 pieces together, isn't it?
Ayumi's class has pet hamsters. At the beginning of the school year, there were 4 hamsters, but now there are 24 of them.
Answer the following questions:
(1) How many times as many hamsters are there now as there were at the beginning of the school year?
(2) If we consider 4 hamsters as I, what number will 24 hamsters correspond to?

An adult jaguar weighs 6 times as much as a jaguar kitten.
If the adult jaguar weighs 72 kg , how much does the kitten
 weigh in kg?
?
Let's think about how to calculate the amount for I.
会
Write a multiplication sentence by considering the weight of the jaguar kitten as $\square \mathrm{kg}$.
2. What calculation is necessary to find the number in the \square ? Think about it using the diagram below.

A story-book costs 920 yen. The price of the story-book is 4 times as much as the price of a comic book. Write a multiplication sentence by considering the price of the comic
 book as \square yen.
Then, find the number that goes in to the \square.

Problems with times as much

We are going to buy 12 cups each of yogurt and pudding.

Grade 4
 Application of multiplicative comparison

4

You can buy a pack of 3 cups
Xof yogurt for 240 yen.
How much will it cost to buy
12 cups of yogurt?

I pock
240 yen

1. Explain the two students' thinking.

HiP
Yumi
I thought about how many times 12 is compared to 3 .
$12 \div 3=4$
$240 \times 4=960$
Answer 960 yen

Pudding is also sold in packs of 3 , and each pack costs 200 yen.
How much will it cost to buy 12 cups of pudding?

Calculate the cost of the following items.
(1) The price of 5 pieces of caramel is 120 yen. How much will it cost to buy 15 pieces of caramel?
(2) The price of 3 sticks of sweet dumpling is I 00 yen. How much will it cost to buy 21 sticks of sweet dumpling?

Multiplication as scaling

When the multiplier (\# of groups) become something other than whole numbers, we need to extend our interpretation of multiplication - "equal groups" is no longer sufficient.

Multiplying and dividing decimals

1 Multiplying Decimal Numbers

We bought 6, 0.3 L
cartons of juice. How much juice is there altogether?

合 What math sentence should we write?

2 Dividing Decimal Numbers

? Let's think about dividing decimal numbers by whole numbers.
\square We bought 3.6 L of water. If we share this water equally among 3 people, how much water will each person get?

1 What math sentence should we write?

[^0]
Multiplying and dividing decimals

Times as Much and Decimal Numbers

Taichi started learning to ride a unicycle this week.

The table on the right shows the longest distance Taichi could ride his unicycle without his feet touching the ground on each day.
Compared to the distance on Monday, how many times as much is the distance for each of the other days of the week?

Taichi's Unicycle

Record	
Distance (m)	
Mon	20
Tues	40
Wed	50
Thurs	30

The distance on Tuesday is how many times as much as the distance on Monday?

$$
40 \div 20=\square \text { (times) }
$$

The distance on Wednesday is how many times as much as the distance on Monday?

? Let's think about what times as much means with a decimal.

If we consider the distance on Monday as I, the distance on Wednesday can be considered as 2.5.

How many times as much is the distance on Thursday as the distance on Monday? 1

$$
30 \div 20=\square \text { times }
$$

We can use decimal numbers to express "times as much", such as 2.5 times as much or 1.5 times as much.
1.5 times means if we consider 20 m as $1,30 \mathrm{~m}$ will be considered as I.5.
The meaning of
thmes as much is
the same when the
number is a whole
number.

A Taichi's record on Friday was 46 m .
How many times as much is the distance on Friday as the distance on Monday.

Taichi's Unicycle

Record	
Mon	Distance (m)
Fri	20

$$
46 \div 20=\square
$$ (times)

A dictionary costs 2800 yen. A storybook costs 800 yen. How many times as much does the dictionary cost as the storybook?

Multiplying and dividing by decimals

I thought we could think of the lengths as if they were whole numbers.

Hiroki

Even when the length of ribbon is a decimal number, we can use a multiplication sentence to find the total cost, just like we did when the lengths were whole numbers.

$$
80 \times 2.3
$$

Let's think about how to calculate.

Multiplying and dividing by decimals

Even when the length of ribbon is a decimal number, we can use division to find the price for Im just like we did with whole numbers.

$$
300 \div 2.5
$$

About how much will it be? Since $300 \div 2=150$ and $300 \div 3=100, \ldots$
? Let's think about how to calculate.
What if we find the price
for 0.1 m and make that
10 times as much...

Possible sequence in the US

Grade 5
Fractions as quotients of whole numbers divided by whole numbers
" Introducing "Q times as much" idea with Q as a fraction (division to find the scale factor)
, Multiplication by fraction as scaling

A key CCSS standard for ratio/rate reasoning

5.NF.B.4.a Interpret the product $(a / b) \times q$ as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations $a \times(q \div b)$.

Examples with 5.NF.B.4.a

For example, use a visual fraction model to show $(2 / 3) \times 4=8 / 3$, and create a story context for this equation. Do the same with $(2 / 3) \times(4 / 5)=8 / 15$. (In general, $(a / b) \times(c / d)$ $=a c / b d$.)

Examples with 5.NF.B.4.a

For example, use a visual fraction model to show $\frac{2}{3} \times 4=2 \times(4 \div 3)=\frac{8}{3}$, and create a story context for this equation. Do the same with

$$
\begin{aligned}
& \frac{2}{3} \times \frac{4}{5}=2 \times\left(\frac{4}{5} \div 3\right)=\frac{8}{15} .(\text { In general, }(a / b) \times \\
& (c / d)=a c / b d .)
\end{aligned}
$$

G6: Multiplication by fractions

Multiplication of Fractions

Let's Think about How to Multiply by Fractions

G6: Multiplication by fractions

With IdL you can paint $\frac{4}{5} \mathrm{~m}^{2}$ of boards. I thought that the
area you can paint with $\frac{2}{3} \mathrm{dL}$ area you can paint with $\frac{2}{3} \mathrm{dL}$
would be $\frac{2}{3}$ times as much as $\frac{4}{5} \mathrm{~m}^{2}$. I think we can use multiplication.

Even when the amount of paint used is a fraction, we can use multiplication to calculate the total area that can be painted, just like we did with whole numbers.

$$
\frac{4}{5} \times \frac{2}{3}
$$

Let's think about how to calculate.

First, we can find the area of boards we can paint with $\frac{1}{3} d \mathrm{dL}$, then...

I wonder if we can
change $\frac{2}{3}$ into a
whole number just as
we did with decimal
multipliers...

Hiroki
If we change $\frac{2}{3}$ into a whole number, we can calculate it. We make the multiplier 3 time as make the multiplier then divide the product by 3 .
$\frac{4}{5} \times \frac{2}{3}=\frac{4}{5} \times\left(\frac{2}{3} \times \frac{1}{4}\right) \div 3$
$=\frac{4}{5} \times 2 \div 3$
$=\frac{\square \times \square}{\square \times \square}$

$$
80 \times 2.3=184
$$

$$
\begin{aligned}
& 2.3=184 \\
& 1 \times 10, \times 10 \\
& \times 23=1840 \\
& \hline 10
\end{aligned}
$$

$80 \times 23=1840$
It's the same thinking we used with decimal numbers. isn't it?

G6：Multiplication by fractions

Let＇s think about lasp to calculate．
First，we can find the area of boards we can paint with $\frac{1}{3} \mathrm{dL}$ ，then．．．

Yumi
First，find the area of boards you can paint with $\frac{1}{3} \mathrm{dL}$ ，and then double that amount．
（Area we can paint with IdL〉 〈Area we can paint with $!\frac{1}{2} \mathrm{dL}$ 〉 〈Area we can paint with $\frac{2}{3} \mathrm{dL}$ ）

$$
\begin{aligned}
\frac{4}{5} \times \frac{2}{3} & =\left(\frac{4}{5} \div 3\right) \times 2 \\
& =\frac{4}{5 \times 3} \times 2
\end{aligned}
$$

$$
=\frac{\square \times \square}{\square \times \square}
$$

$$
=\square
$$

G6: Division by fractions

Even when the amount of paint used is a fraction, we can still use a division sentence to calculate the amount that can be painted with I dL, just like we did with whole numbers and decimal numbers.

$$
\frac{2}{5} \div \frac{3}{4}
$$

$?$
Let's think about how to calculate.

[^1]
G6：Division by fractions

Kaori
！First，find how much area can be painted with $\frac{1}{4} \mathrm{dL}$ ，and then find 4
i times as much as that number．
〈Area painted by $\frac{3}{4} \mathrm{dL}$ ．
（Area painted by $\frac{1}{4} \mathrm{dL}$ ）
〈Area painted by IdL〉

$$
\begin{aligned}
\frac{2}{5} \div \frac{3}{4} & =\left(\frac{2}{5} \div 3\right) \times 4 \\
& =\frac{2}{5 \times 3} \times 4 \\
& =\frac{\square \times \square}{\square \times \square} \\
& =\square
\end{aligned}
$$

－
We can calculate if we can change $\frac{3}{4}$ into a whole number．．．

$\frac{2}{5} \div \frac{3}{4}=\left(\frac{2}{5} \times 4\right) \div\left(\frac{3}{4} \times \frac{1}{4}\right)$
$=\left(\frac{2}{5} \times 4\right) \div 3$
$=\frac{2 \times 4}{5} \div 3$
$=\frac{\square \times \square}{\square \times \square}$

It＇s the same idea we used when we divided by a decimal number． isn＇t it？

5
 We can easily calculate if the divisor is I．So，I multiplied both $\frac{2}{5}$ and $\frac{3}{4}$ by $\frac{4}{3}$ ，the reciprocal of $\frac{3}{4}$ ．

$$
\begin{aligned}
\frac{2}{5} \div \frac{3}{4} & =\left(\frac{2}{5} \times \frac{4}{3}\right) \div\left(\frac{\frac{1}{4}}{1} \times \frac{1}{3}\right) \\
& =\left(\frac{2}{5} \times \frac{4}{3}\right) \div 1 \\
& =\frac{2}{5} \times \frac{4}{3} \\
& =\frac{\square}{\square} \times \square \\
& =\square
\end{aligned}
$$

She is using the same property as the one Shinji used，isn＇t she？

Compare the last part of the math sentences of these three students．

$$
\begin{aligned}
\frac{2}{5} \div \frac{3}{4} & =\frac{2 \times 4}{5 \times 3} \\
& =\frac{8}{15} \quad \text { Answer } \frac{8}{15} \mathrm{~m}^{2}
\end{aligned}
$$

$$
\begin{array}{lrl}
\text { To divide by a fraction, we can } \\
\text { multiply the dividend by the } & \frac{b}{a} \div \frac{d}{c} & =\frac{b}{a} \times \frac{c}{d} \\
\text { reciprocal of the divisor. } & & =\frac{b \times c}{a \times d}
\end{array}
$$

G6: Division by fractions

Let's think about how to calculate.

Concluding Thoughts

Teaching of multiplication and division (whole numbers, decimal numbers, and fractions) in Grades 3 - 5 needs to be thought of as the foundation building for proportional reasoning in middle grades.

Find multiplication facts for 4.

$$
\begin{aligned}
& 4 \times 1=\square \\
& 4 \times 2=\square \\
& 4 \times 3=\square \\
& 4 \times 4=\square \\
& 4 \times 5=\square
\end{aligned}
$$

When the multiplier of 4×5 increases by 1 , by how many does the answer increase?

Find the answers for
$4 \times 6,4 \times 7,4 \times 8$, and 4×9.

$$
\begin{aligned}
& 4 \times 6=\square \\
& 4 \times 7=\square \\
& 4 \times 8=\square \\
& 4 \times 9=\square
\end{aligned}
$$

Concluding Thoughts

Teaching of multiplication and division (whole numbers, decimal numbers, and fractions) in Grades 3-5 needs to be thought of as the foundation building for proportional reasoning in middle grades.

- An important goal of teaching multiplication and division of fractions in Grades 5 and 6 is for students to develop an understanding that multiplication and division are special cases of proportional reasoning.

[^0]: Let's think about how to calculate

[^1]: I wonder if we can change $\frac{3}{4}$ into a whole number, just like we did when using a decimal divisor.

