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Abstract—Long Range Wide Area Network(LoRaWAN) is
suitable for wide area sensor networks due to its low cost,
long range, and low energy consumption. A device can transmit
without interference if it chooses a unique channel, spread
factor(SF), and transmission power(TP). In dense networks, the
devices run out of unique choices, leading to interference and
retransmissions. Eventually, the battery levels of devices drop
faster. Also, the selection of transmission parameters affects the
Time on Air(ToA) of the signal, thus increasing the energy usage
of the end device. Higher values of spread factor, transmission
power, coding rate, channel frequencies, and lower values of
bandwidth increase energy consumption. Moreover, devices can-
not maintain the same values of transmission parameters for
long due to duty cycle restrictions. We use two techniques to
deal with this situation: Frequency hopping and reinforcement
learning. We proposed a scheduling algorithm, ’LoRa-DDPG-
FHSS,’ based on Frequency Hopping Spread Spectrum(FHSS)
and Deep Deterministic Policy Gradient(DDPG) reinforcement
learning for dense networks. It schedules device transmission
parameters by selecting a unique(channel, SF, TP, time slot) to
avoid interference and lower energy consumption. We performed
simulations of three scheduling algorithms: FREE [1], LoRa-
DDPG, and LoRa-DDPG-FHSS using the LoRaSim simulation
tool. Our simulation analysis proves that LoRa-DDPG-FHSS
improves energy efficiency by about 98% and Time on Air is
reduced by 97% compared to FREE in a network with around
4000 devices.

Index Terms—Reinforcement Learning, IoT, Deep Determin-
istic Policy Gradient, Frequency Hopping, Green LoRaWAN.

I. INTRODUCTION

Discussion in ”Worldwide Internet of Things(IoT) spending
guide” [2] shows how fast IoT is spanning across the globe.
IoT devices require a network that thrives on deficient Energy
and has an extensive transmission range, making LoRa the
best choice for IoT devices [3]. But LoRaWAN faces a
few challenges, such as collision due to pure ALOHA-based
MAC layer, network scalability, and its duty cycle restriction;
energy consumption has become a significant concern with
an increased number of devices in the network. Reducing this
consumption for economic and environmental impacts is called
green networking [4]. We would focus on reducing the energy
usage in LoRaWAN to make it greener. LoRa uses an interna-
tionally reserved industrial, scientific, and medical(ISM) band
with 868-870 MHz frequency and has about eight channels and
about 1-10% of duty cycle, with each channel being used only
for 36 sec in 1-hr. [5]. Increased network devices and duty-
cycle increase waiting times, collision causing retransmission,
and increased energy consumption.

Fig. 1. Edge-enabled LoRaWAN with schedule generation for a particular
time slot based on FHSS.

Other factors affecting energy consumption in LoRa are
spread factor(SF) and transmission power(TP) [6]. 6 SFs range
from SF7 to SF12, and these SFs impact data rate, Time on
Air(ToA), battery life, and receiver sensitivity. Reference [7]
shows the existence of global optima of TP for minimizing en-
ergy consumption achieved by configuring device transceivers.
The optimal TP value results from adjusted RSSI(Received
Signal Strength Indication) and SNR(Signal-to-noise Noise
Ratio) received at the gateway, which is affected by indoor
use or obstacles, antenna gain, and cable loss. Thus, antenna
selection plays a vital role in LoRa communication by deciding
the impact of the performance of the link, as well as the self-
configuration of power received on an antenna [8]. Further-
more, there is a need for an edge computing technology with
LoRaWAN for real-time monitoring and control solutions of
massive IoT data overhead in hybrid networks, as discussed in
[9] to work with 5G. This led us to design a battery-conserving
solution to use edge-enabled LoRaWAN. IoT environment
is highly dynamic, and its communication capabilities often
result in sudden variations [10]. Some works [10]–[12] pre-
sented for the LoRa network propose using machine learning
to improve the optimization results.

Intelligent Scheduling Algorithms for LoRa Minimizing
Transmission Time: The Algorithm in reference [13] formu-
lates the scheduling problem as the depreciation of transmis-
sion time. They formulated a minimization equation to find
the total time slot, which gives the time duration of the frame
or time required for all data to be transmitted. A scheduling
algorithm, Fine-Grained Scheduling for Reliable and Energy-
Efficient Data Collection(FREE) in reference [1], is meant
for delay insensitive by scalable networks. The Algorithm
aims to minimize energy consumption while following data
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cycle restrictions and eliminating collisions and grouping
acknowledgments. It supports longer packets over shorter
ones for energy efficiency. Deep Reinforcement learning-based
algorithm for transmission power and spread factor selection
for optimized energy efficiency for flying gateways in LoRa
network is discussed in [14]. Underwater packet delivery ratio
improvement is shown in [15] by optimizing spread factors.
Another work for energy efficiency in [16] uses variable
neighborhood search(VNS) and a minimum-cost spanning tree
algorithm; it reduces low-power networks’ implementation and
maintenance costs. They use LoRa repeaters to increase the
coverage of the LoRa network.

Scheduling Algorithms based on Frequency Hopping Mode
for Reducing Collisions: Frequency-hopping spread spec-
trum(FHSS) transmits radio signals by rapidly changing the
carrier frequency among many frequencies occupying a size-
able spectral band. Recent work in [5], [17], [18] shows
Frequency hopping as a better solution for large-scale delay-
insensitive IoT networks. Furthermore, they proved that path
loss was majorly due to the loss of headers, and the capture
effect can boost performance. Another reference for studying
the scalability of the LoRa system can be found in [19]. They
understood the limitation of transmitters that can be supported,
which limits the capacity of the overall system.

Intelligent Scheduling Algorithms based on Frequency Hop-
ping and Resource Allocation: LoRa-DRL proposed in [10],
[12] is a deep reinforcement learning-based resource allocation
and scheduling algorithm for dense and large-scale LoRa
networks for learning transmission parameters. They aim to
optimize packet delivery ratio(PDR) and energy consumption.

Based on our literature studies, we observed research issues,
which are summarized as follows:

• Static scheduling algorithms for transmission time and
energy minimization focus on a selection of SF but
fail to consider channels, remaining data, or pseudo
orthogonality of SF.

• When the number of registered devices exceeds the
maximum scheduling limit in one cycle, the remaining
devices may starve for their chance. Thus, it needs to do
time slot-based scheduling as well.

• Reinforcement learning(RL) based algorithms for
scheduling are an excellent option since scheduling
needs to consider multiple factors in a dynamic
environment. However, training and executing the model
requires a lot of resources and incurs overhead on the
Lora gateway.

We propose a scheduling strategy in an edge-enabled LoRa
network to overcome its challenges by reducing the collision
and improving the throughput and data rate while minimizing
the energy consumption of devices and prolonging their battery
life. Our scheduling strategy is summarized as follows:

• RL-based strategy calculation occurs at the edge server
and lowers overhead at the LoRa gateway.

• We consider the four unique communication parame-
ters(channel, SF, TP, and time slot) for scheduling, which

gives an equal transmission opportunity to all registered
devices and increases the overall data collection rate.

• We use Frequency hopping by further dividing channels
and selecting a different one for every transmission.

• Our strategy optimally allocates SF, channel, TP, and
time slot such that overall air time and, thus, energy
consumption of the system is minimized.

The remainder of this paper is as follows. We present the
system model of the scheduling strategy in Subsection II-A.
We also discuss the simulation network and formulate the
optimization problem in Subsection II-B. Further, we propose
algorithms and discuss them in Section III. Section IV presents
the simulation setup and discusses the simulation results and
system analysis. Finally, the paper is concluded in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We propose using an edge-enabled LoRa network as shown
in Fig.1 and employ a new reinforcement learning-based
scheduling strategy. Since the LoRa gateway and edge server
are located at the exact location, the energy consumed to
offload computation to the edge is minimal. The network has
energy IoT devices with periodic data transmission. These
devices use uplink channels C to transmit the packets to the
LoRa gateway using SF f at transmission time slot t with
TP p. We use Frequency-hopping spread spectrum(FHSS) to
increase network capacity with LoRa. Thus, we use network
setups such as several channels, packet and fragment size,
data rate, and coding rate similar to the long-range Frequency-
hopping spread spectrum(LR-FHSS) [5]. The number of op-
erating channel width(OCW) channels depends on the data
rate. Since our setup uses DR8/9, we have 8 OCW channels
C, 137 kHz each. To implement frequency hopping, each
OCW channel is divided into 280 Occupied Bandwidth(OBW)
channels c with a bandwidth of 488Hz each. Each device
can use any subchannel c within channel C in the ISM band
supported by LoRa with duty cycle restrictions dc. Signals
transmitted over a channel face interference if at least two of
them select the same OBW channel c and the same SF f for
transmission at the same time slot t. Thus, scheduling a packet
transmission involves the selection of 4-tuple(c, f , p, t) that
is(OBW channel, SF, TP, time slot) for each packet from all
devices which has sent join-request to LoRa gateway such as
to avoid collision and hence reduce energy consumption. Also,
TP should be selected to ensure minimal energy consumption
and acceptable signal strength. Moreover, as explained in [20],
some spreading factors interfere, which should be considered
while scheduling. The energy usage of any device is affected
by the transmission parameter setup of the device.

1) Spread Factor: It determines the number of chips that
form a symbol/chirp. A single increase in the Spreading
Factor roughly doubles the duration of a chirp; fewer
chirps per second are sent. Thus, the ToA of the trans-
mitted signal increases with an increase in the spreading
factor. ToA equals the time for which the transceiver is
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transmitting the signal. Thus, the Energy consumed for
transmitting the signal increases when ToA increases.

2) Bandwidth: With the increased bandwidth, the number
of symbols transmitted in a given time increases. Thus,
overall, ToA decreases and thus decreases the device’s
energy consumption.

3) Central Frequency: Higher central Frequency leads to
an increase in ToA is shown in [21]. Thus increasing
energy consumption.

4) Coding Rate: More chips per symbol are transmitted
for higher coding rates, thus increasing ToA and energy
consumption.

5) Transmission Power: It is signal strength generated by
the transceiver. The generation of a signal with higher
strength consumes higher energy. Thus, with an increase
in transmission power, energy consumption increases.

In frequency hopping, all packets for each device with payload
L and MAC header H are divided into fragments with
interval 50 ms(RP2-1.0.2 LoRaWAN ®Regional Parameters)
fragments(TF ) [22]. Each fragment is transmitted on a separate
OBW, and then the device hops to the next OBW. Moreover,
the duty cycle limitation of 3.9 kHz minimum separation,
which is 8 OBWs(each of 488 Hz), should be maintained.
The DDPG agent in the edge generates a schedule.

While transmitting the packet using LR-FHSS, we transmit
three replicas of the header(for reliability) each of 233 ms
header duration TH and waiting time TW of 2 bits transmission
time. Reference [18] gives the Time on Air Tair of a packet
for L bytes physical layer payload at LR-FHSS as,

Tair = 3 ∗ TH + TW + 0.102
⌈L+ 2

M

⌉
, (1)

M=2 for DR8/DR10, and 0.102 ms is the payload duration.
We define fragments as several bytes transmitted in one hop
period TF , which is 50 ms [18]. Thus, the number of fragments
NF for a given packet with payload L and two milliseconds
guard time is,

NF =
⌈0.102⌈L+2

M

⌉
TF

⌉
. (2)

Energy is consumed for each packet that is transmitted. We
calculate the energy consumed to transmit all D data packets
from a particular device using the equation defined in [1] as,

E =

D∑
i=0

(1 +Ri) ∗ bi ∗ Tair ∗ I ∗ V, (3)

where Ri is the number of times bi packet is retransmitted, I
and V denote current and voltage contributing to TP at the
transceiver at the chip of IoT devices. We design our system
such that it is collision-free. Thus, ideally, retransmission
factor R=0. However, we can expect unregistered IoT devices
to transmit and interfere, which causes retransmission.

Before the communication starts, every device must register
using a join request and obtain its transmission parameters
from the network server. MAC commands sets network param-
eters in each device. The device also sends information such
as location and data buffer. Our learning model at the edge
server generates and sends the schedule to all devices. This

Fig. 2. Diagram illustrates the power and distance between an IoT device
and the LoRa gateway separated by distance R. The LoRa gateway picks up
the signal from one or more IoT devices and power from noise, which affects
the signal-to-noise ratio(SNR).

schedule contains the list of end devices and corresponding
transmission parameters to be set during the transmission of
each packet. Thus, this schedule gives separate transmission
parameters for each packet Di. LoRa gateway then collects the
energy dissipation information from all devices and sends it to
the edge server. The reward is calculated as the total energy
consumed per device. The learning DDPG model learns an
energy-optimized schedule in the next iteration. Other than
interference and collision, packet loss is another factor to
consider for retransmission. It is calculated using the received
signal strength indicator(RSSI) and sensitivity. RSSI measures
the power in the radio signal, which is an approximate value
for signal strength received on an antenna. RSSI can be given
as using [23],

RSSI = p− PL(d0) + 10 ∗ γ + log(d/d0) + µ, (4)

where p is TP, PL(d0) is path loss at reference distance
d0, γ is path loss exponent [24] and µ is unknown-but-
bounded(UBB) noise with zero mean. In the RSSI equation,
the path loss exponent is the average path loss for a given
distance d concerning the reference distance d0, and γ is
the path loss exponent. This path loss exponent can vary
for different environments. If RSSI is lower than sensitivity
[1], the packet is considered lost and must be retransmitted.
However, the RSSI equation does not consider the antenna
parameters and the noise level. Therefore, besides RSSI, the
noise level should be regarded as to obtain the signal-to-noise
ratio(SNR). Given the antenna specifications, the Friis formula
provides another metric that can be used with the RSSI metric
by considering the noise level and finding the SNR.

From the diagram in Fig. 2, the received power at a distance
R away from the transmitter is given to be

Pr =
PtGtGrλ

2

(4πR)2
, (5)

where G is the gain of the antenna, λ is the wavelength, and
R is the distance between transmitting antennas. However,
this equation only states the gain of the antennas, which
is a function of the antenna efficiency and directivity. The
following equations include the antenna efficiencies.

Gt = ηtDt, Gr = ηrDr, (6)

where D is the directivity of the antenna η efficiency of
the antenna. The receive antenna picks up both the signal and
noise power at temperature(Ω), which can be expressed in
terms of the bandwidth(BW ).
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Pn = KΩsBW, (7)

where Pn is receiver noise power, K is Boltzmann’s constant
[1.38 x 10−23 (J/k)],Ωs is system noise temperature [mea-
sured in kelvins], and BW is Receiver bandwidth in Hz. Now
that we have the receive signal power and the receiver noise
power, the signal-to-noise ratio, SNR, and its value in decibels
can be defined as the following,

SNR =
Pr

Pn
=

PtGtGrλ
2

(KΩsBW )(4πR)2
, (8)

SNR(dB) = 10 logPtGtGrλ
2-10 log (KΩsBW )-20 log (4πR)2

(9)
B. Problem Formulation

Our goal is to generate a device-wise transmission parameter
scheduling sequence. It is a sequence of optimal values for
three quantities: OBW channel, SF , and TP for all devices
such that there is no interference. Each schedule is represented
as a 3-dimensional matrix having eight channels, 6 SF s, and
TP as three dimensions for each time slot. Each time slot is
for a fragment duration time. Thus, we generate a schedule of
transmission parameters for each data fragment for all devices.
Thus, we can formulate this problem as follows,

min

N∑
n=0

Bn∑
b=0

rb ∗ Tair ∗ I ∗ V (10)

s.t. N∑
n=0

τ∑
t=0

M [t][n] =

N∑
n=0

Bn (11)

∑τ
t=0 M [t][n] ∗ Tair

τ
≤ d ∀n ∈ N, (12)

where Bn denotes buffer size for device n and rb is retrans-
mission factor for packet b. Equation (10) is an energy min-
imization equation for all N devices. Equation (11) confirms
that all Bn packets of each device are transmitted in total
τ time slots, and each time slot t transmits M [t][n] packets.
LoRa, given by (12), satisfies duty cycle restriction where d
denotes duty cycle percentage allowed(1%).

We formulate optimal energy for the scheduling problem
as a Markov decision problem(MDP). It is a 4-tuple problem
(State(S), Action(A), Reward(R), T ransitionMatrix(X)).

• State(S): For each frame of a given time slot, the system
observes a state which is input to it. The state is denoted
as, S = {B,Loc}, where B = B1, B2..BN denotes the
data in the buffer and Loc is their location.

• Action(A): It consist of actions taken to change the
state. Action A = A1, A2..AN in our system denotes
the scheduling decision for each device n represented as,
An = {f, c, p, t}.

• Reward(R): Reward helps the DDPG model to learn and
decide the action and update according to the reward. Our
reward is based on energy consumption E found using
(10) given by R = −E, where the negative sign shows
that as energy reduces, reward increases and vice versa.
Our DDPG model will learn that reward should increase,
implying that energy consumption decreases.

• Transition Matrix(X): It denotes the initial state si
transition to the next state si+1 when action A is taken.

III. PROPOSED ALGORITHMS

We propose two algorithms that are based on reinforcement
learning. First is LoRa-DDPG, which generates a schedule of
OCW channel C, SF f , and TP p by calculating rewards
to minimize energy consumed by all devices. This Algorithm
does not have time schedule, which may give rise to the colli-
sion. Our second approach, LoRa-DDPG-FHSS in Algorithm
1 uses frequency hopping and generates a time-based schedule
by predicting the unique 4-tuple(c, f , p, t), where c is an OBW
channel. Thus, we make a collision-free scheduling policy
with minimal energy consumption. Collision testing at line
15 in Algorithm 1 involves checking frequency collision
and SF collision for overlap in Frequency and SF. Collision
increases energy consumption and thus reduces reward.

Algorithm 1 Algorithm for LoRa-DDPG-FHSS
Input: Initialize The LoRa network with N as a number of devices, locations, and packet
sizes.
Output: Schedule for sending packets for all packets.
1: for episodes in MaxEpisodes do
2: [(C, f , p)] * N = DDPG(State)
3: device sf txpow= group devices based on SF , TP
4: reward ep = 0
5: for device_list in device_sf_txpow do
6: t schedule, o schedule = generateSchedule()
7: rewardf = Simulate transmission and calculateReward()
8: reward ep += rewardf

9: end for
10: Learn DDPG network based on reward ep
11: end for
12: calculateReward():
13: check overlap in the generated schedule
14: test collision in simulation
15: test path loss using RSSI and sensitivity
16: if collision then
17: reward = MIN INT
18: return reward
19: end if
20: Calculate Energy E, reward = -1 * E
21: return reward
22: generateSchedule(): # adds time parameter to scheduling apart from(c, f, p) time=0
23: for fragment in device_list do
24: for device in device_list do
25: if obw == 280 then
26: obw = 0, time + = 1
27: end if
28: obw+ = 1
29: o schedule[device][fragment] = obw
30: t schedule[device][fragment] = time
31: end for
32: end for

A. Unique schedule generation

Nodes are grouped based on SF and channel(collision
as per LoRa-DDPG). LoRa-DDPG-FHSS uses method
generateSchedule() to assign unique OBW and time to each
node. Every node gets a time schedule and an OBW schedule,
each having length NF as described in (2). In generated
schedules, a maximum number of nodes transmit without
overlapping in their OBWs for each time slot. Every OBW
assigned to a given time slot is such that a minimum separation
of 8 OBWs is maintained. Also, any OBW is not repeated for
a given node in the next time slots if they consume all their
duty cycles for that OBW. This confirms that the schedule
of devices with the same SF is collision-free and without the
same time slot and OBW during frequency hopping.
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(a) FREE [1] (b) LoRa-DDPG-FHSS

Fig. 3. Comparison of SF distributions for the proposed LoRa-DDPG-FHSS
algorithm and the existing FREE Algorithm using data size = 50 Bytes and
an increasing number of devices ranging from 100 to 2000

B. Deep Deterministic Reinforcement Learning Algorithm

The proposed problem in (10) is an optimization problem
where we need to optimize energy by adjusting channels,
spread factors, and transmission power values. Transmission
power is a continuous variable and makes its selection an
exhaustive Energy. Thus, we can say that the problem we
are trying to solve is NP-hard and quite complex. The
reinforcement learning algorithm is a suitable solution for
such optimization problems where the agent must perceive
and interpret its environment and take action accordingly.
Hence, reinforcement learning is our first choice to solve
our problem. RL-based algorithms such as Q-learning(QL)
and State–action–reward–state–action(SARSA) are suitable
for limited action spaces like cart pole games. We resort
to deep Q networks since our action space is much higher.
There are(8 * 280 = 2240) OBW channels to select, seven
spread factors, and 15 transmission powers. Selection in this
space is quite expensive. Moreover, not all are discrete for the
selection of transmission parameters; hence, we use the DDPG
algorithm applied in our proposed Algorithm. 1.

IV. PERFORMANCE EVALUATION

A. Simulation Setup

We implement simulations LoRa-DDPG and LoRa-DDPG-
FHSS using LoRaSim [19], which uses the Simpy library from
Python. For machine learning, we use Python’s Tensorflow
libraries. We evaluate and compare results with FREE algo-
rithm results using parameter setup in [1]. We use parameters
for simulation discussed in Table I. Our learning agent gets
input device information and learns the policy to generate
optimal channel, spread factor, and transmission power. We
collect results by increasing the number of devices ranging
from 0 to 4000 and task sizes or data sizes from 10 to 50
bytes. We have extended this learning with the Frequency
hopping strategy in LoRaSim to include OBW and time slot
selection to avoid a collision. After every learning episode, we
generate rewards as the negative value of energy consumption.
The learning agent learns that optimal parameters generate
maximum reward, meaning learning takes place to minimize
energy. Thus, our Algorithm optimizes energy consumption.

TABLE I
SIMULATION PARAMETERS

Parameter Value
Number of IoT devices(N ) 100-4000
Channels(C) [867MHz, 867.3MHz,

867.5MHz, 867.7MHz,
867.9MHz, 868.1MHz,
868.3MHz, 868.5MHz]

Data size(B) 10-50B
OCW Bandwidth(OCW BW ) 137 KHz
OBW Bandwidth(OBW BW ) 488 Hz
OBW minimum separation 3.9 kHz
Coding Rate(CR) 1/3
Data Rate(DR) 8
Spread Factor(f ) [7,8...12]
Coding Rate(CR) 1/3
Payload fragment duration 50ms
Payload duration 102ms
Uplink channel duty cycle(d) 1%
Battery Capacity 1000 mAh
SNR limits, Receiver Sensitivities [1]

B. Discussion on the Simulation Results

We collect results for analysis and comparative study
with existing algorithms based on our implementation. LoRa-
DDPG uses only reinforcement learning for optimization,
and LoRa-DDPG-FHSS uses reinforcement learning and Fre-
quency hopping. We compare both their results with the
heuristic approaches, FREE: Fine-Grained Scheduling for Re-
liable and Energy-Efficient Data Collection [1] and frequency
hopping-based approach LR-FHSS [5]. Fig. 3 shows the
evaluation of algorithms for SF distributions by increasing the
number of devices: the existing heuristic FREE approach in
Fig. 3(a), and the proposed LoRa-DDPG-FHSS in Fig. 3(b).
When using LoRa-DDPG-FHSS, we focus on minimizing en-
ergy consumption. We observe that each device uses minimal
SF s. SF is directly related to energy consumption. Hence,
more devices use a lower SF , but if devices are far away, they
need to minimize the SF among a higher spectrum. FREE
fails to consider collection time when minimizing energy. In
our proposed approach, in addition to packet loss validation,
Frequency hopping minimizes energy consumption.

Fig. 4 compares the number of collisions, Energy con-
sumption, and Transmission time when the number of devices
increases in dense and scalable networks. Fig. 4(a) shows
that the number of collisions observed in LoRa-DDPG-FHSS
is the lowest and equals zero. But we see collisions in
LoRa-DDPG and FREE algorithm. Fig. 4(b) shows lower
energy consumption in both intelligent algorithms than FREE.
Since the reward function of both DDPG-based algorithms is
designed to minimize energy consumption, which is proven in
evaluation results. Moreover, frequency hopping enables the
full utilization of the network capacity and lower collision, re-
ducing energy consumption. The total transmission time for all
three algorithms is recorded in Fig. 4(c) and shows improved
proposed approaches due to effective collision management.

V. CONCLUSION

We proposed an intelligent and energy-efficient frequency
hopping-based scheduling algorithm called LoRa-DDPG-
FHSS for edge-enabled LoRa networks. It improves energy
efficiency(98%) and ToA(97%) as compared to existing ap-
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(b) Energy Consumption

100 500 1000 1500 2000 2500 3000 3500 4000

Number of End Devices

0

200

400

600

800

T
o

ta
l 
T

ra
n

sm
is

si
o

n
 T

im
e

 (
m

s
) LoRa-DDPG-FHSS

LoRa-DDPG

FREE [1]

(c) Transmission Time

Fig. 4. Total number of collisions in Fig. 4(a), Total energy consumption in Fig. 4(b) and Total time in Fig. 4(c) required to transmit all packets using
strategies(FREE [1], LoRa-DDPG, and LoRa-DDPG-FHSS in Algorithm 1) for increasing number of devices in the network under consideration.

proaches and makes it a greener LoRaWAN. The Frequency
hopping technique deals with duty cycle restrictions and
hops different frequencies for every fragment duration. The
reinforcement learning-based Deep deterministic policy gra-
dient algorithm helps to find optimal transmission parame-
ters, including spread factor, transmission power, and central
Frequency for all data fragments from all devices ready to
transmit. We observe that unlike FREE, signal strength in
our approach is maintained even when devices are far away
from the gateway. LR-FHSS is designed without the scalability
independent of increasing the transmitting packet rate by each
end device; instead, it focuses on the overall network capacity
increase provided by the statistical multiplexing of combining
time and frequency diversity. As part of our future work, we
plan to evaluate LoRa-DDPG-FHSS on the emulator and real
LoRa network. This would help us test our Algorithm in real-
world scenarios as well. We also plan to improve LoRa with
Frequency hopping for communication with increased data to
transmit, thus opening more use cases for LoRa.
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