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Abstract
In this work, we discuss the general principles of the Monte Carlo 

method, applying it to perform numerical integration. We then 

discuss its application for the simulation of events at high-energy 

particle colliders, through the construction of Monte Carlo event 

generators, one of which we construct for electro-positron 

annihilation into muon-anti-muon pairs. 

Introduction
When you think of Monte Carlo, most people would think of the 

city in Monaco that is famous for its numerous casinos, but in 

scientific computing, Monte Carlo is more synonymous with 

randomness, like that which is found in gambling. Monte Carlo 

simulations (MCs) use randomness and probability to generate data 

for many diverse types of processes, facilitating their theoretical 

treatment.

A Simple Monte Carlo Simulation 
A simple example of an MC simulation is used to calculate the 

irrational number 𝜋 by randomly selecting N points in a square with 

a circle of radius 𝑟 inscribed in it.  By counting the number of 

points that fall within the circle, one can obtain an approximation 

for 𝜋. The more points that are used in this simple “simulation”, the 

closer the estimate is to 𝜋 (fig. 1).

Figure 1: A simple Monte Carlo Simulation for calculating π.

Monte Carlo Integration
The Monte Carlo method also allows for a simple and powerful way 

to estimate integrals. In particular, if we pick 𝑁 points randomly and 

uniformly in a region 𝑎, 𝑏 , the average value of a function 𝑓(𝑥) in 

that region provides an approximation for the integral (fig. 2). Along 

with this, it is also easy to obtain the uncertainty in the calculation. 

An advantage of Monte Carlo integration over other methods is that 

the error scales as 1/ 𝑁 , irrespective of dimensionality of the 

problem, rendering it quintessential for integrals in many 

dimensions, such as those encountered in particle physics. 
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Figure 2: Monte Carlo Integration in one dimension.
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Monte Carlos in Particle Physics
Due to its efficiency in higher dimensions, Monte Carlo integration 

is ideal for calculating cross sections for particle interactions at high 

energy colliders. The cross section can be roughly thought to 

represent the “frequency” at which a certain event is likely to occur 

at a particle collider, such as the Large Electron-Positron Collider 

(LEP) at CERN, Geneva, Switzerland, the predecessor of the Large 

Hadron Collider, operating between 1989 and 2000. In this work, we 

have considered the process where an electron and positron 

annihilate into a muon-anti-muon at LEP: 𝑒−𝑒+ ⟶ 𝜇−𝜇+ (fig. 3).
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Figure 3: The leading-order Feynman 

diagram for 𝑒−𝑒+ ⟶ 𝜇−𝜇+.

Simulating Electron-Positron Annihilation
The differential cross section for electron-positron annihilation 

into muon-anti-muon pairs is given by:
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where dΩ is the solid angle element, θ is the scattering angle 

between the incoming 𝑒− and outgoing 𝜇−, Ƹ𝑠 = 90 GeV is 

the center-of-mass energy, and 𝛼 ≃ 1/132.5 is the QED 

coupling. 𝐴0,1 are functions that depend on the contributing 

“virtual” particles, in this case the photon (γ) and the Z boson. 

To simulate the process, we employ the “hit-or-miss” method 

[1], where we “throw” random values of cos 𝜃, and accept or 

reject according to the differential cross section. 

Results 
We show the cos 𝜃 distribution in fig. 4, where we also show 

the graph without the Z boson (left). Another interesting 

observable is the forward-backward asymmetry, 𝐴𝐹𝐵 =
𝐹−𝐵

𝐹+𝐵
, 

which gives us a measure of the difference of the number of 

electrons moving in the forward direction, F, versus those in 

the backward direction, B. We find: 𝐴𝐹𝐵 = 0.2490 ± 0.009.

Figure 4: Results through the MC simulation of 𝑒−𝑒+ ⟶ 𝜇−𝜇+. 
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