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Although much progress has been made in simulation optimization, problems involving computationally expensive simulations

having high-dimensional, discrete decision-variable spaces have been stubbornly resistant to solution. For this class of problems

we propose Dice and Slice Simulation Optimization (DASSO). DASSO is a form of Bayesian optimization that represents the

prior on the objective function implied by the simulation as a sum of low-dimensional Gaussian Markov random fields. This

prior is consistent with the full-dimensional objective function, rather than assuming that it is actually separable. By working

iteratively between posteriors on these low-dimensional “dice” and a full-dimensional “slice” of the decision-variable space,

DASSO makes rapid progress with little algorithm overhead even on problems with more than a trillion feasible solutions. We

achieve further computational savings by showing that we can find the best solution to simulate on each iteration without having

to assess the potential of all solutions—as is traditionally done in Bayesian optimization—by identifying a small set of Pareto-

optimal solutions in subsets of the dimensions. We prove that DASSO is asymptotically convergent to the optimal solution,

while emphasizing that its most important feature is the ability to find good solutions quickly in problems beyond the capability

of other methods.
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1. Introduction

Simulation optimization (SO) is a technique for improving the performance of complex systems under

uncertainty, where the design parameters of the simulation model represent the controllable decision vari-

ables of the system. Unlike deterministic optimization and stochastic programming problems, the objective

function in SO has no explicit form and can only be estimated using simulation experiments. SO problems

with discrete decision variables are known as discrete simulation optimization (DSO) problems and arise in

many areas of operations research and management science.

For large-scale DSO problems, where only a small fraction of feasible solutions can reasonably be simu-

lated, one can employ metaheuristics, adaptive random search, or inference-based algorithms. Metaheuris-

tics typically provide no statistical performance guarantees. Adaptive random search algorithms, on the

other hand, can be shown to achieve asymptotic convergence to the global or a local optimum. However,

such convergence results have little practical meaning for large-scale problems if it is not possible to simu-

late even a modest fraction of the feasible solutions. See Fu et al. (2015) for a review of DSO algorithms.

Inference-based algorithms are closely related to Bayesian optimization (BO), a popular technique for

optimizing black-box functions that is known for making rapid search progress. BO provides guidance for

the search based on the conditional (posterior) distribution of a stochastic process representing the unknown

objective function. A popular choice for the prior on the objective function is a Gaussian process (GP) due

to its posterior being Gaussian if the simulation output distribution is also Gaussian. Although GPs with a
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continuous domain have been adapted to solve DSO problems (see, e.g., Quan et al. 2013, Sun et al. 2014,

Xie et al. 2016), Salemi et al. (2019) demonstrate empirically that continuous-decision-variable covariance

functions may fail dramatically when used for guidance and optimality-gap inference in discrete problems.

They also show that using a Gaussian Markov random field (GMRF) prior, as an alternative to a continuous

GP, provides much better search guidance and stopping inference for DSO. Our new methods start from

the foundation of the Gaussian Markov Improvement Algorithm (GMIA) of Salemi et al. (2019) but are

dramatically different.

A GMRF is a multivariate Gaussian random vector associated with an undirected graph where the nodes

represent feasible solutions and the edges determine correlation structure. Unlike GPs with a continuous

domain, GMRFs can be naturally defined on a lattice, making it more suitable for DSO problems. The

correlation structure is defined by a precision matrix, the inverse of the covariance matrix, where the nonzero

elements correspond to edges in the defining, and ideally sparse, graph. The GMRF-based GMIA algorithm

evaluates the complete expected improvement (CEI) of each feasible solution on each iteration to guide the

search. CEI predicts each solution’s improvement in the objective function relative to the current sample-

best solution based on the posterior distribution of the GMRF (Salemi et al. 2019, Semelhago et al. 2021).

Computing the full posterior distribution at every iteration of GMIA requires inversion of the precision

matrix, a computationally expensive calculation. Fortunately, computing the CEI of each feasible solution

requires only the diagonal and a single column of the covariance matrix (i.e., the inverse of the precision

matrix) of the posterior. While the elements of the required column can be obtained by a direct back-solve,

extracting the diagonal elements is computationally more challenging. To address this, Semelhago et al.

(2017) propose an efficient way to extract the diagonal elements by exploiting the sparse structure of the

precision matrix. They further speed up GMIA by employing a divide-and-conquer strategy to restrict the

search within a small promising subset of feasible solutions for several iterations (Semelhago et al. 2021).

Alternatively, Li and Song (2020) apply the Sherman-Morrison-Woodbury formula recursively, updating

only the necessary elements of the covariance matrix until it is no longer cheaper than inversion.

These computational improvements greatly extend the reach of GMIA-based DSO. Nevertheless, even

these variants encounter a limit on the problem size they can attack, for instance when the decision-variable

dimension is high, since the computational cost of calculating the posterior distribution increases at least

quadratically in the number of feasible solutions. To reach significantly beyond this limit, we propose the

Dice and Slice Simulation Optimization (DASSO) algorithm that decomposes the prior distribution into a

rigorously justified additive form via a functional analysis of variance (FANOVA). In this decomposition,

the first-order terms represent independent GMRFs and the higher-order terms form a random effect with a

chosen first-order term. The decomposition reduces the problem dimension to facilitate efficient posterior

updates, moving high-dimensional DSO problems that are too large to solve with current technology into

the realm of possibility. Our numerical analysis reveals that DASSO can obtain good feasible solutions

rapidly on problems with more than a trillion feasible solutions, far beyond the reach of any other algorithm.
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Of course, no single SO algorithm is appropriate for all problems. Our particular interest is in stochastic

DSO problems with integer-ordered decision variables, very large numbers of feasible solutions, and a

simulation that itself is so computationally expensive that one only expects to simulate a tiny fraction of

the solution space, even given substantial time and high-performance computing. For such problems rapid

progress toward better and better solutions, iteration by iteration, is essential. Although we do prove that

DASSO is “convergent,” this is more of academic than practical interest for the class of problems on which

we focus. Examples of such computationally prohibitive problems include the design of a new fuel injector

production line described in Tongarlak et al. (2010), where 20 replications of a single feasible solution took 8

hours, and a “future mobility” problem that we worked on in collaboration with an automotive manufacturer,

where each replication of a single feasible solution took a few hours. Computationally less expensive, yet

still large-scale examples include the bike-sharing system modeled as a discrete-event simulation in Jian

et al. (2016), and a multi-product inventory problem with an (s,S) policy for each product, where s and

S are the reorder and order-up-to levels, respectively. We use this inventory problem for our numerical

analysis and as a running example throughout the paper.

In summary, we propose the DASSO algorithm, a type of BO for solving large-scale, computationally

expensive DSO problems whose feasible solutions are defined on a finite subset of a high-dimensional

integer lattice. The key contributions are as follows: DASSO exploits an innovative representation that

decomposes the prior on the objective function into an additive form, reducing the problem dimensionality

to facilitate computationally efficient posterior updates, but without losing a full-dimensional representation

as other additive decompositions do. Furthermore, DASSO achieves rapid search progress by identifying

the best-CEI solution to simulate on each iteration while avoiding the computational overhead of actually

computing the CEI of all solutions. In brief, DASSO makes large-scale DSO computationally efficient

without sacrificing what makes BO so effective in small-scale problems, facilitating the solution of far larger

problems than can be attacked by any competing BO algorithm.

The remainder of this article is organized as follows: Section 2 reviews the literature on high-dimensional

BO and DSO. Section 3 briefly defines GMRFs and shows how they can be used to solve DSO problems.

Section 4 explains how FANOVA justifies the prior distribution representation that underlies the DASSO

algorithm. Empirical performance evaluations are in Section 5. Finally, conclusions are provided in Sec-

tion 6. All proofs and many derivations are in the e-companion.

2. Literature Review

In their review paper, Binois and Wycoff (2022) classify the solution tactics for high-dimensional BO into

three categories based on the structural model assumptions made to deal with the curse of dimensionality.

Worth noting is that much of this literature addresses machine-learning problems or deterministic computer

experiments, rather than stochastic simulation.
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Under the assumption that only a subset of the decision variables are active, the first approach is to reduce

the problem dimension by removing the decision variables that have little or no impact on the objective

function. By doing so, a lower-dimensional problem with only influential decision variables can be solved

instead. Such a lower-dimensional problem can be obtained by initially performing variable selection, if no

expert knowledge is available. However, variable selection itself is more computationally challenging as the

dimension increases. Also, when all decision variables have similar influence on the objective function, no

such reduction is possible. Even when it can be done, the reduced-dimension problem may still be relatively

high dimensional depending on the actual number of influential decision variables.

Assuming the existence of a lower-dimensional active subspace, the second approach is to find a projec-

tion of the decision variables to obtain an active subspace, then apply BO. Since such an active subspace, if

it exists, is unknown, the projection must be estimated. One can parameterize the projection scheme (e.g., a

projection matrix) and estimate the parameters (see, e.g., Garnett et al. 2014, Tripathy et al. 2016), obtain the

projection from a sensitivity analysis (see, e.g., Djolonga et al. 2013), or sample it randomly (see, e.g., Wang

et al. 2016). Yet it is critical (especially, when such an active subspace does not exist) to figure out which

feasible solution to simulate next in an optimization search because that decision involves projecting back

to the full space, which is needed to parameterize the simulation. Such a projection back may be inefficient

when a large part of the space is infeasible. Moreover, the computational savings from a projection-based

approach relies heavily on the size of the active subspace’s dimension (Mathesen et al. 2019).

Under the assumption of an additive structure for the objective function, the third approach is to decom-

pose the objective function into a sum of functions, each with fewer decision variables. The motivation is

to perform the optimization component-wise, making the search much more efficient, and thus addressing

the computational burden of high-dimensional BO. Several papers in this stream assume that the objec-

tive function is a sum of independent low-dimensional functions with disjoint (separable) decision variable

dimensions (see, e.g., Kandasamy et al. 2015, Gardner et al. 2017, Wang et al. 2018), while others allow

possibly overlapping dimensions (see, e.g., Hoang et al. 2018, Rolland et al. 2018). They differ mainly in

how they learn the additive structure. They all model the lower-dimensional functions as realizations of

independent GPs. This implies that the prior on the objective function values is a GP with an additive kernel.

A potential downside of the additivity assumption is that it implies that the interactions among the subsets

of decision variables (which we refer to as groups) are assumed to be negligible. Further, the covariance

matrix of the additive GP may not be invertible due to linear relationships among the solutions, which is

more likely to occur when the feasible solution space is discrete (Durrande et al. 2010).

Our DASSO methodology is superficially related to this last approach in terms of decomposing the objec-

tive function, but it does not enforce a separability approximation. Instead, it employs discrete FANOVA to

include all high-order interactions among the groups by iteratively employing two steps: The “dice” step

avoids the computational burden of the high-order interactions by forming a random-effect that combines
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the high-order terms with one of the lower-dimensional groups, and then selects a partial solution based on

its posterior. Next, DASSO obtains a best-CEI solution from the posterior of the partial solution “slice,” a

posterior that has the same (low) dimension as the hold-out group and that fully accounts for all higher-order

interactions. Details are in Section 4.

Although FANOVA has been used mostly as a basis for global sensitivity analysis, some studies (see, e.g.,

Muehlenstaedt et al. 2012, Ginsbourger et al. 2016, Ulaganathan et al. 2016) focus on high-dimensional GP

modeling on a continuous domain and provide uncertainty measures over predictions or more computation-

ally efficient GP models. Our aim is different in that we solve SO problems over a discrete domain.

To our knowledge, the only other inference-based algorithm that is designed for high-dimensional DSO

problems is the projected Gaussian Markov improvement algorithm (pGMIA) of Li and Song (2024); see

also Mes et al. (2011). pGMIA partitions the dimensions into two groups, called “region” and “solution”

layers, and projects the latter onto the former. The region layer is represented as a graph, where the objective

function value at a node is the average of objective function values at the feasible solutions projected onto

that node. pGMIA alternates between choosing a node in the region-layer graph and deciding the next fea-

sible solution to simulate from the solutions projected onto the chosen node. For both decisions, it models

the objective function values as a GMRF and adopts CEI as the criterion to choose which feasible solu-

tion to simulate next. Li and Song (2024) also describe pGMIA+, a multi-layer extension of pGMIA, and

both algorithms outperform the state-of-the-art high-dimensional BO algorithms to which they compare.

Therefore, pGMIA represents the state of the art against which we compare in Section 5.

3. Discrete Simulation Optimization with GMRFs

Our problem to minimize y(x) = E rY (x)s subject to x∈X , where X is a finite subset of the d-dimensional

integer lattice treated as a collection of (column) vectors. The objective, y(x), can only be estimated via

stochastic simulation. In particular, the output Yj(x) = y(x) + ϵj(x) can be observed for x on replication

j = 1,2, . . . , where {ϵj(x)} are independent and identically distributed with mean zero and finite (unknown)

variance σ2(x) that may depend on x. In the multi-product inventory problem, x denotes the vector of

reorder and order-up-to values for each product, Y (x) represents the average cost per period obtained from

a single replication, and y(x) is the true expected average cost per period. We define GMRFs and explain

how they have been used to solve the DSO problem in Sections 3.1–3.2, deferring our approach to Section 4.

3.1. Gaussian Markov Random Field (GMRF)

A GMRF is a multivariate Gaussian random vector Y = [Y1,Y2, . . . ,Yn]
⊤ associated with an undirected

labeled graph G = (V,E), where V is the set of n nodes and E is the set of edges (Rue and Held 2005). In a

DSO setting, each node represents a solution xi associated with the corresponding element of Y. Moreover,

we impose the structure that solutions that differ by ±1 in one coordinate are connected by edges. Letting
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µ and Q be the mean vector and precision matrix of Y, respectively, the probability density function of the

GMRF can be written as f(y|µ,Q) = (2π)−n/2|Q|1/2 exp
`

− 1
2
(y−µ)⊤Q(y−µ)

˘

. The precision matrix

is the inverse of the covariance matrix and is positive-definite. The choice of E makes Q have no more

than 2d+1 nonzero elements. The diagonal elements of Q are the conditional precisions: Qii =Prec(Yi |

YV\{i}), where YS denotes the subvector of Y including only the nodes in any S ⊂ V . The off-diagonal

entries are proportional to conditional correlations; specifically, Qij =−Corr(Yi,Yj |YV\{i,j})
a

QiiQjj .

A GMRF Y is Markovian in the sense that it has the local Markov property: Yi ⊥YV\(N (i)∪{i}) |YN (i),

where N (i) = {j:{i, j} ∈ E} is the set of neighbors of node i in G. This implies that the random vari-

able Yi, conditional on the values of its neighbors, is independent of the values at non-neighboring nodes.

Consequently, Qij ̸= 0 if and only if {i, j} ∈ E .

3.2. Gaussian Markov Improvement Algorithm (GMIA)

Since the vector of objective function values, denoted by y = [y(x1), y(x2), . . . , y(xn)]
⊤, is unknown, it

can be modeled as a realization of the GMRF Y= rY(x1),Y(x2), . . . ,Y(xn)s
⊤ ∼ N pµ,Q−1q with mean

vector µ of size n× 1 and precision matrix Q of size n×n; this is the prior.

Suppose that only the “design points,” a subset of the feasible solutions, have been simulated. Let D⊆X

denote the current subset of design points, and partition X into the two disjoint sets D and U = X \ D.

Notice that D is the set of feasible solutions that have been simulated, and U is the set of feasible solutions

that have not (i.e., are unsimulated). Using these disjoint sets, the vector Y can be partitioned into YU and

YD, which are the subvectors of Y including the solutions in U and D, respectively, that is, Y =
´

YU
YD

¯

.

Similarly, the vector µ can be partitioned into µU and µD.

The sample mean vector of simulated values at the design points, denoted by ȲD, can be represented

as a realization of Yϵ
D = YD + ϵ, with YD and ϵ independent, and ϵ∼ N

´

0⃗|D|,Σ
ϵ
¯

, where 0⃗|D| is a |D|-

dimensional vector of zeros and Σϵ is the intrinsic covariance matrix of the stochastic noise inherent to ȲD.

When the design points are simulated independently, Σϵ is a diagonal matrix, whereas it is a dense matrix

when the design points are simulated with common random numbers; due to the expense of inverting dense

matrices we opt for independent simulations.

The conditional distribution of Y given Yϵ
D = ȲD is

N

ˆˆ

µU
µD

˙

+ Q̄−1

ˆ

0⃗|U|
[Σϵ]−1

`

ȲD −µD
˘

˙

, Q̄−1

˙

, where Q̄=Q+

ˆ

0|U|×|U| 0|U|×|D|
0|D|×|U| [Σϵ]−1

˙

(1)

is the conditional precision matrix and 0a×b is the a× b matrix of zeros. The unsimulated solutions are first

in the GMRF representation because we assume the solutions have been so ordered.

Let x̃ denote the current sample-best solution (among the design points in D) based on sample means,

i.e., x̃= argminx∈D ȲD(x), where ȲD(x) is the element of ȲD associated with x. Then, the CEI of x∈X
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relative to x̃ is CEI px̃,xq =E
“

max{Y(x̃)−Y(x),0} |Yϵ
D = ȲD

‰

. Let m(x) and v(x) denote the condi-

tional mean and conditional variance of Y(x), respectively, and c(x̃,x) denote the conditional covariance

between Y(x̃) and Y(x). Then the conditional variance of the difference Y(x̃)−Y(x) is v(x̃,x) = v(x̃)+

v(x)− 2c(x̃,x). Further, the CEI of x∈X \ {x̃} can be expressed as

CEI px̃,xq = (m(x̃)−m(x)) Φ

˜

m(x̃)−m(x)
a

v(x̃,x)

¸

+
a

v(x̃,x) ϕ

˜

m(x̃)−m(x)
a

v(x̃,x)

¸

,

where ϕ and Φ are the standard normal probability density and cumulative distribution functions, respec-

tively (Salemi et al. 2019). At each iteration, GMIA simulates the sample-best solution, x̃, and the solution

with the largest CEI, then updates the posterior distribution and continues. CEI is an enhancement of the

“expected improvement” criterion for optimizing deterministic black-box functions (Jones et al. 1998) that

has been shown to be particularly effective in stochastic simulation (see also Chen and Ryzhov 2019). All

else being equal, CEI px̃,xq is decreasing in m(x) and increasing in v(x̃,x), which is the property DASSO

exploits to significantly improve computational efficiency as described in Section 4.6.

3.3. Intermezzo

A DSO algorithm for large-scale, expensive simulation optimization needs to be both search-effective and

computationally feasible. The search-effectiveness of BO depends on the choice of GP prior, particularly its

covariance structure. Hidden in the GMIA summary above is a sparse parameterization for Q that has been

shown empirically to be exceptional for guiding the search in DSO problems (Salemi et al. 2019, Semelhago

et al. 2017, 2021, Li and Song 2020, 2024) as well as computationally advantageous; see Section EC.5 in

the e-companion. Clearly this formulation is something we do not want to lose.

However, even though the form of Q in GMIA is sparse, evaluating the posterior distribution, and even

calculating the CEIs for every feasible solution on every iteration, becomes computationally prohibitive if

the number of feasible solutions is (say) in the trillions. Therefore, GMIA and its variants are constrained

by the size of the problem, particularly its dimension. To overcome this limitation, we propose the DASSO

algorithm that has a search-effective yet computationally feasible covariance structure while avoiding the

need to calculate the CEI of every feasible solution on each iteration, all without approximations.

4. Dice and Slice Simulation Optimization (DASSO)

Recall that the aim is to minimize y(x) subject to x ∈ X , where X is a finite subset of the d-dimensional

integer lattice, and the objective can only be estimated via stochastic simulation. The set of feasible solutions

can be represented as X =
Śd

i=1Xi, where Xi is a finite subset of the one-dimensional integer lattice

with ni = |Xi|. The number of feasible solutions is n=
∏d

i=1 ni which increases exponentially in d; thus,

only a small fraction of feasible solutions can be simulated for high-dimensional problems with expensive

simulations even if |Xi| is small. In the following subsections, we show how DASSO tackles this problem.
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4.1. Discrete FANOVA

The following Discrete FANOVA (DFA) representation of the objective function justifies the prior distri-

bution at the heart of DASSO: Suppose we assign probabilities to each feasible solution for the purpose

of measuring the global sensitivity in terms of variance of the output response with respect to solutions’

component dimensions. Specifically, assume that the component dimensions of a feasible solution are inde-

pendent and follow discrete uniform distributions. That is, letting X= [X1,X2, . . . ,Xd]
⊤ denote a random

vector, we have P{X=x}=
∏d

i=1P{Xi = xi}, ∀x= [x1, x2, . . . , xd]
⊤ ∈X , and P{Xi = x}= 1/ni, ∀x∈

Xi, for each component dimension Xi of X, where xi denotes the ith component of x. Therefore,

P{X=x}=
d∏

i=1

P{Xi = xi}=
1∏d

i=1 ni

=
1

n
, ∀x= [x1, x2, . . . , xd]

⊤ ∈X . (2)

Thus, all feasible solutions are equally likely, or equally weighted in a non-probabilistic sense.

For any subset u of component indices d= {1,2, . . . , d}, let xu = (xi)i∈u denote the lower dimensional

component of x associated with u. The number and set of lower dimensional components associated with

u are nu =
∏

i∈u ni and Xu =
Ś

i∈uXi, respectively. Also, let −u denote the complementary set d \u. In the

DFA decomposition, we first define the grand mean to be y∅(x) =
1
n

∑
x∈X y(x) fi ȳ, ∀x∈X . Notice that

y∅(x) is a constant that does not depend on any component dimensions of x. Then, for u⊆ d, the effect of

xu can be expressed as yu(x) = 1
n−u

∑
x−u∈X−u

`

y(x)−
∑

v⊂u
yv(x)

˘

, ∀x∈X . Notice that yu(x) depends

on x only through xu as the effect of x−u is averaged out. Using these effects, y(x) can be represented as

a DFA decomposition: y(x) =
∑

u⊆d
yu(x). Under the probability measure in (2), we can show that these

functions have certain properties.

PROPOSITION 1. The following properties hold if X follows Distribution (2): (a) E ry(X)s = ȳ,

(b) E ryu(X)s = 0, ∀u ⊆ d with u ̸= ∅, (c) E ryu(X)yv(X)s = 0, ∀u,v ⊆ d with u ̸= v,

(d) Var ry(X)s =
∑

u⊆d
Var ryu(X)s.

Proposition 1 states that (a) the overall mean of y(X) is ȳ; (b) other than y∅(x), each yu(X) in the DFA

decomposition has zero mean; (c) yu(X) and yv(X) for u ̸= v are uncorrelated; and (d) the overall variance

of y(X) decomposes into the sum of the variances of each individual function. Proposition 1 holds for any

y(·) regardless of its functional form, and it motivates the DASSO prior distribution on Y.

4.2. Decomposition

Partition d into g ≥ 1 disjoint non-empty sets g(1),g(2), . . . ,g(g), i.e.,
⋃

ρ∈G g
(ρ) = d and g(ρ) ∩ g(ϱ) = ∅ for

ρ ̸= ϱ, where G = {1,2, . . . , g}. These sets represent “groups” indexed by the superscripts in parentheses.

For instance, in the multi-product inventory problem, groups can represent subsets of products. The indexing

of the groups is updated throughout the algorithm. Later we will single out group g for special treatment.
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x1
x2

x3

x2

x3
x1

X (2)X (1)

Figure 1 Illustration of a decomposition into two groups with g(1) = {2,3} and g(2) = {1}.

Throughout the paper, ρ and ϱ index groups. For each ρ∈ G, let X (ρ) and x(ρ) represent the corresponding

components of X and x, respectively, indexed by g(ρ), i.e., X (ρ) =
Ś

i∈g(ρ) Xi and x(ρ) = (xi)i∈g(ρ) . Notice

that X (ρ) is a finite subset of the d(ρ)-dimensional integer lattice with n(ρ) distinct points, where d(ρ) = |g(ρ)|

and n(ρ) = |X (ρ)|=
∏

i∈g(ρ) ni. Further, notice that
∑

ρ∈G d
(ρ) = d and n=

∏
ρ∈G n

(ρ). Figure 1 illustrates a

decomposition into two groups for a simple 3-dimensional example with n= 12 solutions.

For each group ρ ∈ G, we define the group function y(ρ)(x) =
∑

u⊆g(ρ):u̸=∅ yu(x). That is, y(ρ)(x) is the

summation of all functions in the DFA decomposition indexed by a subset of g(ρ). Notice that y(ρ)(x) is

a function of only x(ρ), and thus can be rewritten as y(ρ)(x(ρ)). Then, based on the DFA decomposition

of y(x), we can write y(x) = β0 +
∑

ρ∈G y
(ρ)(x(ρ)) + y(r)(x), where β0 = ȳ, and y(r)(x) represents the

remainder. Namely, y(r)(x) is the summation of yu(x) for u⊆ d such that u ̸= ∅ and u ̸⊆ g(ρ) for all ρ ∈ G.

Thus, y(r)(x) is a function of all component dimensions of x and captures the interactions across the groups.

Let y(ρ) =
”

y(ρ)(x
(ρ)
1 ), y(ρ)(x

(ρ)
2 ), . . . , y(ρ)(x

(ρ)

n(ρ))
ı⊤

be the vector of group ρ components of the objec-

tive function. Also, let y(r) denote vector of remainder terms [y(r)(x1), y
(r)(x2), . . . , y

(r)(xn)]
⊤. Using

the y(ρ)’s and y(r), the vector of objective function values at all solutions in X can be expressed as y =

β01⃗n +
∑

ρ∈G T
(ρ)y(ρ) + y(r), where 1⃗n is an n-dimensional vector of ones and T (ρ) is the transformation

matrix associated with group ρ. The (k, l)th element of T (ρ) is 1 if x(ρ)
l is the corresponding lower dimen-

sional component of solution xk, and 0 otherwise. Notice that T (ρ) is an n× n(ρ) matrix containing only

one nonzero element with value 1 in each row. To assist optimization we impose a prior distribution on y.

Starting with the group function y(ρ), we model it as a realization of the GMRF

Y(ρ) =
”

Y(ρ)(x
(ρ)
1 ),Y(ρ)(x

(ρ)
2 ), . . . ,Y(ρ)(x

(ρ)

n(ρ))
ı⊤

∼N
´

0⃗n(ρ) , [Q(ρ)]−1
¯

with precision matrix Q(ρ) of size n(ρ) × n(ρ). The prior mean of Y(ρ) is zero as a consequence of the

DFA decomposition; see Property (b) of Proposition 1. Similarly, the remainder y(r) can be modeled as a

realization of the GMRF Y(r) ∼N
´

0⃗n, [Q
(r)]−1

¯

with precision matrix Q(r) of size n×n.

What sets our model apart from other additive approximations proposed for high-dimensional BO (cf.

Kandasamy et al. 2015, Gardner et al. 2017, and Wang et al. 2018) is that we retain the term Y(r), repre-

senting the inadequacy of a fully separable model. Therefore, we do not assume y(·) separates into the sum
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of functions of groups, unlike other approaches. All of our GMRFs are mutually independent by Property

(c) of Proposition 1 because uncorrelated implies independence for Gaussian processes.

In summary, as justified by the DFA decomposition, the vector y of objective function values is modeled

as the realization of a constant plus a linear combination of mean-zero, independent GMRFs

Y= β01⃗n +
∑
ρ∈G

T (ρ)Y(ρ) +Y(r). (3)

The goal of defining the prior distribution on the DFA decomposition is to achieve significant computational

benefits when obtaining the posterior of Y via the posteriors of the g lower-dimensional GMRFs. However,

(3) does not reduce computation unless Q(r) is diagonal, since it is full-dimensional (n × n); diagonal

implies no spatial correlation representing interaction. This is the first issue we address.

A second issue, whether Q(r) is diagonal or not, is that if the values of its diagonal elements are very

large, which may occur when the contribution of y(r)(x) to the objective function value y(x) is negligible,

then y(x) becomes closer to a purely separable function. Purely separable Y (without Y(r)) has linearly

dependent elements due to the repetitive rows in the T (ρ)’s, leading to a singular covariance matrix for Y.

The singular covariance matrix may cause computational issues when updating the posterior distribution

of Y. More importantly, the linear dependence of groups causes inconsistencies between y and Y unless

the former has the same additive structure as the latter. See Section EC.4 in the e-companion for a small

example illustrating the linear dependence issue.

One of our key contributions is addressing these two issues in a way that preserves computational effi-

ciency without losing a full-dimensional representation. To do this we divide and conquer.

Our first innovation is to obtain the posterior distributions of groups 1,2, . . . , g − 1 by modeling group

g plus the remainder term as a simple random effect, leading to a computationally tractable posterior dis-

tribution for Y. Specifically, we replace T (g)Y(g) + Y(r) with a GMRF with prior distribution W(g) ∼

N
´

0⃗n, σ
2
gIn

¯

with a positive but finite σ2
g , where In is the n×n identity matrix. Therefore, the GMRF prior

for y becomes

Y= β01⃗n +
∑

ρ∈G(−g)

T (ρ)Y(ρ) +W(g), (4)

where G(−g) = G \ {g} eases notation. The identity of “group g” may change in each iteration of DASSO

so that no group is restricted to be only a part of W(g).

Both (3) and (4) model the same problem but with different prior distributions; (4) provides weaker infer-

ence on the component dimensions in group g, but is computationally tractable and free of the inconsistency

issue. Moreover, updating the identity of g lets (4) learn all groups’ effects equitably.

Under (4), the distribution of Y is a convolution of low-dimensional distributions and an easy-to-evaluate

full-dimensional distribution. Moreover, for fixed G, Y depends only on lower dimensional components

x(−g) = (xi)i∈d\g(g) , which we refer to as the “first g−1 components.” Therefore, it infers the same posterior
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for any feasible solution with the same first g − 1 components. Utilizing (4), DASSO performs a “dice”

stage to determine the first g − 1 components of the solution to simulate by maximizing the CEI defined

over X (−g) =
Ś

i∈d\g(g) Xi.

Our second innovation is to further model the component dimensions in group g by a n(g)-dimensional

GMRF for all solutions with the same first g − 1 components, as selected in the dice stage. DASSO then

performs a “slice” stage to find the components in group g to simulate using the single-group GMRF.

In summary, DASSO alternates between using a simple random-effect GMRF to represent the complex

remainder term when choosing values for the g− 1 groups in the dice stage, and a detailed GMRF of the

lower-dimensional slice of the remaining group with those values fixed. As we show in Section 5 this leads

to rapid search progress with low computational overhead.

Remark: We have argued that the prior in (4) is ideal for DASSO, and the form of the prior leads to a

computationally feasible posterior computation, as shown below. However, to be search-effective the prior

must have appropriate parameters. The DASSO prior has 2+
∑g

ρ=1(d
(ρ)+1) parameters in total, d(ρ)+1 for

each non-remainder group, and two for the overall mean and the random-effect variance. In Section EC.5

in the e-companion, we describe how we estimate these parameters via maximum likelihood so that they

are consistent with the decomposition in (4). In brief, we apply maximum likelihood estimation to the

differences in the simulation outputs at carefully chosen pairs of design points so that through cancellation

the difference of a pair reflects only the effect of a single group in (4). This accounts for all but two of the

parameters, whose estimation is straightforward.

4.3. Bayesian Inference for Dice Stage

In this section we derive the posterior distribution for the dice stage. Recall that D⊆X is the set of feasible

solutions that have been simulated, and U =X \D is the set of feasible solutions that have not. Using these

disjoint sets, the random-effect vector W(g) can be partitioned into W(g)
U and W(g)

D , which are the subvectors

of W(g) including the solutions in U and D, respectively.

For each group ρ ∈ G, let D(ρ) ⊆X (ρ) denote the set of lower-dimensional components of the solutions

in D corresponding to group ρ, and partition X (ρ) into the two disjoint sets D(ρ) and U (ρ) = X (ρ) \ D(ρ).

Assuming that the elements of Y(ρ) are reordered, we can partition Y(ρ) and precision matrix Q(ρ) as

Y(ρ) =

ˆ

Y(ρ)
U

Y(ρ)
D

˙

∼N

˜˜

0⃗|U(ρ)|
0⃗|D(ρ)|

¸

,

ˆ

Q
(ρ)
UU Q

(ρ)
UD

Q
(ρ)
DU Q

(ρ)
DD

˙−1
¸

,

where Y(ρ)
U and Y(ρ)

D are the subvectors of Y(ρ) including the points in D(ρ) and U (ρ), respectively. The

covariance matrix of Y(ρ)
D , Σ(ρ)

DD =
”

Q
(ρ)
DD −Q

(ρ)
DU [Q

(ρ)
UU ]

−1Q
(ρ)
UD

ı−1

, can be derived from the block matrix

inversion formula. Similarly, transformation matrix T (ρ) can also be partitioned into
˜

T
(ρ)
UU T

(ρ)
UD

0|D|×|U(ρ)| T
(ρ)
DD

¸

.
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The lower-left block is a zero matrix because x(ρ) ∈ D(ρ) if x ∈ D from the definition of D(ρ). Then,

YD = β01⃗|D| +
∑

ρ∈G(−g) T
(ρ)
DDY

(ρ)
D +W(g)

D . The mean vector and covariance matrix of YD are µD = β01⃗|D|

and ΣDD =
∑

ρ∈G(−g) T
(ρ)
DDΣ

(ρ)
DD[T

(ρ)
DD]

⊤ +σ2
gI|D|, respectively.

Theorems 1 and 2 state the posterior distributions of Y(ρ) for ρ∈ G(−g) and W(g), respectively.

THEOREM 1. For ρ ∈ G(−g), the conditional distribution of Y(ρ) given Yϵ
D = ȲD is normal with mean

vector m(ρ) and covariance matrix Σ̄(ρ) = [Q̄(ρ)]−1, where

m(ρ) = [Q̄(ρ)]−1

˜

0⃗|U(ρ)|

[T
(ρ)
DD]

⊤E(ρ)
`

ȲD −µD
˘

¸

, Q̄(ρ) =Q(ρ) +

ˆ

0|U(ρ)|×|U(ρ)| 0|U(ρ)|×|D(ρ)|

0|D(ρ)|×|U(ρ)| [T
(ρ)
DD]

⊤E(ρ)T
(ρ)
DD

˙

,

and E(ρ) =
”

ΣDD −T
(ρ)
DDΣ

(ρ)
DD[T

(ρ)
DD]

⊤ +Σϵ
ı−1

.

THEOREM 2. The conditional distribution of W(g) given Yϵ
D = ȲD is normal with mean vector m(g) and

covariance matrix Σ̄(g) = [Q̄(g)]−1, where

m(g) = [Q̄(g)]−1

ˆ

0⃗|U|
E(g)

`

ȲD −µD
˘

˙

, Q̄(g) =
1

σ2
g

In +

ˆ

0|U|×|U| 0|U|×|D|
0|D|×|U| E(g)

˙

,

and E(g) =
“

ΣDD −σ2
gI|D| +Σϵ

‰−1
.

Since Σ̄(g) is the inverse of a block-diagonal matrix, it has a block-diagonal structure. Although Σ̄(g) is

an n×n matrix, its block-diagonal structure enables us to compute it by inverting only a |D|× |D| matrix.

Corollary 1 below follows immediately from the fact that Y= β01⃗n +
∑

ρ∈G(−g) T (ρ)Y(ρ) +W(g).

COROLLARY 1. The conditional distribution of Y given Yϵ
D = ȲD is normal with the conditional mean

vector and conditional covariance matrix

m= β01⃗n +
∑

ρ∈G(−g)

T (ρ)m(ρ) +m(g) and Σ̄=
∑

ρ∈G(−g)

T (ρ)Σ̄(ρ)[T (ρ)]⊤ + Σ̄(g).

Let v = diag
`

Σ̄
˘

and c= Σ̄ex̃, where diag p·q represents the diagonal of the corresponding matrix as a

vector, and ex̃ is the n-dimensional basis vector consisting of 0s and a single 1 in the position corresponding

to x̃. Then v is the vector of conditional variances of Y, and c is the vector of conditional covariances

between Y(x̃) and all components of Y. For any x, conditional mean m(x), conditional variance v(x) and

conditional covariance c(x̃,x) are the respective components of m, v and c associated with x.

For group ρ ∈ G(−g), let m(ρ)(x(ρ)), v(ρ)(x(ρ)) and c(ρ)(x̃(ρ),x(ρ)) be, respectively, the components of

m(ρ), v(ρ) and c(ρ), associated with lower dimensional component x(ρ), where v(ρ) = diag
`

Σ̄(ρ)
˘

and

c(ρ) = Σ̄(ρ)e
(ρ)
x̃ . Also, let m(g)(x), v(g)(x) and c(g)(x̃,x) be, respectively, the components of m(g), v(g) and

c(g), associated with solution x, where v(g) = diag
`

Σ̄(g)
˘

and c(g) = Σ̄(g)ex̃. Due to the special structure

of T (ρ), Corollary 1 implies that

m(x) =
∑

ρ∈G(−g)

m(ρ)(x(ρ))+m(g)(x), v(x) =
∑

ρ∈G(−g)

v(ρ)(x(ρ))+ v(g)(x)
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and

c(x̃,x) =
∑

ρ∈G(−g)

c(ρ)(x̃(ρ),x(ρ))+ c(g)(x̃,x).

Observe that m(x), v(x), and c(x̃,x) are obtained from terms extracted from low-dimensional posterior

distributions and an easy-to-evaluate full-dimensional posterior distribution. This is as opposed to a com-

putationally impossible-to-evaluate full-dimensional distribution. And because we can choose any way to

group the component decision variables we can effectively manage the burden of the posterior calculations.

These computational savings enable DASSO to deal with high-dimensional DSO problems.

From the terms m(x), v(x), and c(x̃,x), we can compute the CEI of x. Recall that BO algorithms find

good solutions rapidly because they are guided by evaluating—in our case simulating—the solution offering

the most potential improvement based on inference from the posterior distribution, but this is a bottleneck if

there are (say) trillions of solutions whose improvement must be assessed on each iteration. In Section 4.6,

we make a significant computational improvement for the CEI calculation by exploiting the fact that m(x),

v(x), and c(x̃,x) are written in additive forms, and thus we can easily determine if there is another solution

with a larger CEI than a group of solutions without fully computing their CEIs. This provides a substantial

computational saving because it suffices to calculate the CEIs for only a relatively small number of feasible

solutions to find a CEI-maximizing solution; see Section 5.3.

Expressing m(x), v(x), and c(x̃,x) in additive forms also enables us to show that the CEIs of the feasible

solutions in U with the same first g−1 components are identical; see Proposition 2 in Section 4.6. Therefore,

there might be multiple solutions with the largest CEI. This is mainly a consequence of the random-effect

group having a diagonal covariance matrix.

We think of the posteriors of the first g−1 groups as individual dice because the overall posterior includes

their summation. Once we “roll the dice” (select their CEI maximizing components), we can evaluate a slice

of the full-dimensional posterior that we address in the next section.

4.4. Bayesian Inference for Slice Stage

Suppose that values of x(1), . . . ,x(g−1), the first g − 1 components, are chosen in the dice stage. For sim-

plicity, let z denote these chosen components; notice that z is not full-dimensional, i.e., its dimension is

d− d(g). Then, the remaining slice of Y, denoted by Y(·|z), is only a function of the last component, x(g),

and thus lower dimensional. In the inventory problem this corresponds to fixing the reorder and order-up-

to values of some products with the remaining yet to be chosen. Thus, Y(·|z) = SzY is a random vector

of size n(g) × 1, where Sz is the transformation matrix to fix x(−g) to z. We refer to the distribution of

Y(·|z) as a “slice” rather than a “conditional” because it is a subvector of Y and not conditioned on z.

The (k, l)th element of Sz is 1 if solution xl is composed of x(−g) = z and x
(g)
k , and 0 otherwise. Notice

that Sz is a n(g) ×n matrix containing one nonzero element with value 1 in each row. Under (3), Y(·|z) =
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β0Sz1⃗n+
∑

ρ∈G(−g) SzT
(ρ)Y(ρ)+SzT

(g)Y(g)+SzY(r). The special structures of the transformation matri-

ces Sz and T (ρ) imply that Sz1⃗n = 1⃗n(g) , SzT
(ρ)Y(ρ) =Y(ρ)(z(ρ))1⃗n(g) for ρ∈ G(−g), and SzT

(g) = In(g) ,

where z(ρ) represents the group ρ component of z. Therefore,

Y(·|z) =

¨

˝β0 +
∑

ρ∈G(−g)

Y(ρ)(z(ρ))

˛

‚1⃗n(g) +Y(g) +SzY(r).

Ignoring the remainder part, SzY(r), for simplicity, we impose a GMRF prior with mean vector βz1⃗n(g)

and precision matrix Q(g) on Y(·|z), where βz = β0+
∑

ρ∈G(−g) y(ρ)(z(ρ)). While Y(·|z) could be modeled

with any appropriate precision matrix, we use Q(g) because of its convenience and simplicity; recall that the

identity of g is updated over time and the parameters of Q(ρ) are initially estimated for each group ρ∈ G.

Let Xz = {x ∈ X :x(−g) = z} denote the set of feasible solutions whose first g − 1 components are

z; notice that |Xz| = n(g). Also, let Dz = Xz ∩ D denote the set of design points (i.e., feasible solutions

that have been simulated) whose first g − 1 components are z. Partitioning Y(·|z) into two subvectors

accordingly, the conditional distribution of Y(·|z) given Yϵ
D = ȲD can be obtained from (1).

4.5. The DASSO Algorithm

DASSO is presented in Algorithm 1. At a high level, DASSO employs CEI to choose the values of the first

g − 1 components of x in the dice stage, selects the remaining components of group g in the slice stage,

simulates the selected solutions and then repeats. A more detailed description follows.

Algorithm 1 first initializes the design set D by choosing a subset of feasible solutions. After simulating

the solutions in D, the GMRF parameters of the prior are estimated. DASSO then starts the dice stage: the

identity of the last group is chosen and the parameter β0 is re-estimated accordingly by using the simulation

outputs from the solutions in D. Re-estimation of β0 is not necessary, but doing so helps the inference

since the estimated value depends on the identity of the last group. Unlike the other GMRF parameters,

estimation of the constant term is straightforward; see Section EC.5 in the e-companion. DASSO next finds

a solution with the largest CEI, x́ ∈ argmaxx∈X\{x̃}CEI px̃,xq , and fixes the first g − 1 components to

x́(−g), i.e., z = x́(−g). The set of candidate solutions is restricted to Xz = {x ∈ X :x(−g) = z} to form

a slice. Finally, the current sample-best solution, x̃, is simulated. Figure 2 illustrates the dice stage for a

simple 3-dimensional example with n= 64 solutions.

In the slice stage, the parameter βz is estimated by using the simulation outputs of the solutions in Dz.

If Dz = Xz ∩D = ∅, i.e., if none of the solutions in Dz has been simulated before, then a set of solutions

in Xz is chosen to simulate before the estimation. Until the stopping criterion of the slice stage is satisfied,

the algorithm simulates argmaxx∈Xz
CEI px̃|z,xq and x̃|z = argminx∈Dz

ȲD(x), and updates the slice

posterior distribution. Notice that the slice stage computes the CEI of each solution in Dz with respect to

the sample best within Dz, but this is a small set. Once the stopping criterion of the slice stage is satisfied,

the algorithm returns to the dice stage unless its stopping criterion is also satisfied.
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Algorithm 1 DASSO
1: Initialize D by choosing a subset of feasible solutions. Simulate the solutions in D to estimate the

parameters (i.e., Q(ρ) and σ2
ρ for ρ∈ G, and β0).

2: while stopping condition of the dice stage not satisfied do

3: Choose a group to be the last group g.

4: Re-estimate β0 by using the simulation outputs of the solutions in D.

5: Using the posterior distribution of Y, calculate the CEIs of the solutions to find x́ with the largest

CEI, i.e., x́∈ argmaxx∈X\{x̃}CEI px̃,xq.

6: Restrict the set of candidate solutions to Xz = {x∈X :x(−g) = z}, where z = x́(−g).

7: Simulate the current sample-best solution x̃= argminx∈D ȲD(x).

8: Simulate some solutions in Xz if Dz =Xz ∩D= ∅ so that βz can be estimated.

9: while stopping condition of the slice stage not satisfied do

10: For the solutions in Xz, let Y(·|z)∼N
´

βz1⃗n(g) , [Q(g)]−1
¯

be a GMRF.

11: Estimate βz by using the simulation outputs of the solutions in Dz.

12: Let x̃|z = argminx∈Dz
ȲD(x) be the sample-best solution in Dz.

13: Using the posterior distribution of Y(·|z), calculate the CEIs of the solutions in Xz to find the

solution with the largest CEI, i.e., argmaxx∈Xz
CEI px̃|z,xq.

14: Simulate argmaxx∈Xz
CEI px̃|z,xq and x̃|z.

15: end while

16: end while

x́ x̃
↓ Xz ↓
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Figure 2 Illustration of the dice stage on a solution space X = {1,2,3,4}3 with three 1-dimensional groups. Letting g = 3,

suppose that solutions x38, x39 and x40 (in blue) have the largest CEI in the dice stage in Step 5. Then, the restricted

set of candidate solutions is Xz = {x37,x38,x39,x40} (indicated with red dashed line).

DASSO requires user inputs for the decomposition and some criteria in Steps 1, 2, 3, 8, and 9 as well as an

acquisition function such as CEI to guide the search. Below, we discuss the choices adopted in our numerical

experiments in Section 5. First, notice that the user-defined decomposition (i.e., the groups) remains the

same throughout the algorithm. Although DASSO could allow the decomposition to be updated, the GMRF

parameters would need to be estimated for each new decomposition. To estimate the parameters for the

user-defined decomposition in Step 1, we employ a parameter estimation method described in Section EC.5
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of the e-companion. This method simulates specially constructed pairs of design points. Thus, to estimate

the parameters for a new decomposition, additional design points that do not directly guide the search

would need to be simulated to complete the pairs, wasting simulation effort. Therefore, we do not update

the decomposition in our numerical experiments. Nevertheless, we empirically evaluate the performance of

DASSO with different fixed decompositions.

Algorithm 1 contains two stopping conditions, one for the dice stage in Step 2 and another for the slice

stage in Step 9. For the former, we adopt a fixed computation budget in terms of total number of replications,

i.e., the algorithm terminates after a certain number of replications. For the latter, we similarly adopt a fixed

budget in a sense that the number of slice-stage iterations per dice stage is one; in other words, Steps 9 and

15 are removed from the algorithm. We use fixed-budget stopping conditions for the sake of fair comparison

in our numerical experiments. An alternative is using CEI for stopping, as proposed in Salemi et al. (2019),

where the algorithm terminates once the largest CEI value drops below a specified threshold.

To update the identity of the group g in Step 3, we can impose a discrete distribution with support G

to randomly choose it. Alternatively this discrete distribution could adapt to some metrics measuring the

impact of groups on the objective function values and changed from time to time during the search. For

the sake of simplicity in our numerical experiments, we impose a discrete uniform distribution; that is, we

choose group g randomly at each change. While intuitively it seems clear that each group should take turns

as group g, the best way to assign it is an open question. Similarly, to choose some solutions from Xz to

simulate when Dz = ∅ in Step 8, a discrete distribution with support X (g) can be applied; we again adopt a

discrete uniform distribution in our numerical experiments.

DASSO employs CEI as the acquisition function in both the dice and slice stages to choose the feasible

solution to simulate next. Alternatively, acquisition functions such as the knowledge gradient (Frazier et al.

2009) and information-theoretic approaches (see, e.g., Hernández-Lobato et al. 2014, Wang and Jegelka

2017, Hvarfner et al. 2022) could be applied in the slice stage because the candidate solution set is relatively

small. However, implementing them in the dice stage requires more careful consideration in large-scale

problems. Specifically, identifying the solution that maximizes the acquisition function among a very large

number of feasible solutions on each iteration by enumeration imposes too much computational overhead

to be practical. An advantage of CEI, as described in Section 4.6, is that the structural properties of CEI

support a strategy that identifies the best-CEI solution while only evaluating a small fraction of them.

Before providing the empirical evaluation to demonstrate the excellent finite-sample performance of

DASSO in Section 5, we note that we establish the global convergence of DASSO under the very mild

conditions and a small tweak to the algorithm; see Section EC.3 in the e-companion. We confess that

this convergence result is strictly of academic interest, since we do not expect to approach anything like

convergence in the class of problems we consider. The real test for DASSO and any competitor is whether

it makes rapid improvement by exploiting limited simulation, unencumbered by algorithm overhead.
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4.6. Computational Efficiency of Dice Stage

Although we have focused on the computational expense of the posterior distribution update, all expected-

improvement type algorithms suffer the additional computational burden of needing to evaluate the potential

of every feasible solution on every iteration. Choosing a solution heuristically or focusing on only a small

subset of feasible solutions risks making a poor decision, which is fatal when simulations are so expensive.

Fortunately, DASSO facilitates an elegant solution to this problem.

To make a decision in the dice stage, the CEI of each solution needs to be computed; see Step 5 of

Algorithm 1. Aiming to reduce the bottleneck, we derive the following two relationships between the CEIs

of solutions that have not been simulated:

PROPOSITION 2. For two solutions x and x̆ in U:

(R1) CEI px̃,xq =CEI px̃, x̆q if x(ρ) = x̆(ρ) for all ρ∈ G(−g).

(R2) CEI px̃,xq ≤CEI px̃, x̆q if for some group ρ∈ G(−g), all of the following conditions hold:

(C2.1) x(ϱ) = x̆(ϱ) for all ϱ∈ G \ {ρ, g},

(C2.2) m(ρ)(x(ρ))≥m(ρ)(x̆(ρ)), and

(C2.3) v(ρ)(x̃(ρ),x(ρ))≤ v(ρ)(x̃(ρ), x̆(ρ)), where v(ρ)(x̃(ρ), ·) = v(ρ)(x̃(ρ))+ v(ρ)(·)− 2c(ρ)(x̃(ρ), ·).

Furthermore, for two solutions x and x̆ in D:

(R3) CEI px̃,xq ≤ CEI px̃, x̆q if x(ρ) = x̆(ρ) for all ρ ∈ G(−g), m(g)(x) ≥ m(g)(x̆), and v(g)(x̃,x) ≤

v(g)(x̃, x̆), where v(g)(x̃, ·) = v(g)(x̃)+ v(g)(·)− 2c(g)(x̃, ·).

Relation (R1) states that the CEIs of the feasible solutions in U (unsimulated) with the same first g − 1

components are identical. If a solution x is dominated by some other solution x̆ in terms of CEI, then x can

be excluded from the candidate solutions to simulate in the next iteration. Recall that CEI px̃, ·q decreases in

m(·) and increases in v(x̃, ·). From this property, Relation (R2) stipulates that the dominance relationship

between CEIs at solutions x and x̆ can be established without actually computing them by identifying

the Pareto-efficient points for each group based on conditional means and variances. Therefore, we can

identify solutions in U whose CEIs cannot be the largest if one of their lower dimensional components is

dominated in mean and variance; in the inventory problem this corresponds to reorder and order-up-to points

that cannot have the largest expected improvement on the next iteration. Since these relations enable us to

compare the CEIs of two solutions in U without actually calculating them, the computational burden can

be drastically reduced, especially when the number of feasible solutions is large. Relation (R3) similarly

stipulates the dominance relationship between CEIs at design points (i.e., simulated solutions in D) with

the same first g − 1 components. Specifically, we can identify solutions in D that cannot be the largest

if their random-effect component is dominated in mean and variance. Relation (R3) does not reduce the

computational burden as much as Relation (R2) does since the cardinality of D is much smaller than U , but

it could help in a DSO problem for which a larger number of distinct solutions can be simulated.
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To further elaborate on (R2), let

F (ρ)(x(ρ)) =
{
x̆(ρ) ∈X (ρ) \ {x(ρ)}:m(ρ)(x(ρ))≥m(ρ)(x̆(ρ)) and v(ρ)(x̃(ρ),x(ρ))≤ v(ρ)(x̃(ρ), x̆(ρ))

}
denote the set of points that Pareto-dominate x(ρ) ∈X (ρ) for ρ∈ G(−g). Moreover, CEI px̃,xq ≤CEI px̃, x̆q

for solutions x and x̆ in U with x(ϱ) = x̆(ϱ) for all ϱ ∈ G \ {ρ, g} and x̆(ρ) ∈ F (ρ)(x(ρ)). We define

a point x(ρ) ∈ X (ρ) as Pareto-efficient in group ρ ∈ G(−g) if F (ρ)(x(ρ)) = ∅, i.e., if it is not Pareto-

dominated by any other point. Then, the Pareto frontier, which consists of the Pareto-efficient points, of

group ρ ∈ G(−g) is F (ρ) =
{
x(ρ) ∈X (ρ):F (ρ)(x(ρ)) = ∅

}
. We use these Pareto frontiers to construct F ={

x∈ U :x(ρ) ∈F (ρ), ∀ρ∈ G(−g)
}

, which is the set of solutions in U with Pareto-efficient points for all lower

dimensional components except that of the last group. As a result of Proposition 2, the following corollary

presents the conditions under which it suffices to calculate only the CEIs of solutions in F to identify the

solution with the largest CEI, in U .

COROLLARY 2. Let x́ ∈ argmaxx∈U\F CEI px̃,xq. If there exist some solution x̆ ∈ U such that x́(ϱ) =

x̆(ϱ) for all ϱ∈ G \ {ρ, g} and x̆(ρ) ∈F (ρ)(x́(ρ)) for some group ρ∈ G(−g), then

max
x∈U\F

CEI px̃,xq =CEI px̃, x́q ≤CEI px̃, x̆q ≤max
x∈F

CEI px̃,xq .

Furthermore, x̆∈F because x́ ̸∈ argmaxx∈U\F CEI px̃,xq, otherwise.

When the number of feasible solutions is large, the condition in Corollary 2 holds almost all the time

because considering the large size of U , for all x́∈ argmaxx∈U\F CEI px̃,xq, it is very unlikely to simulate

every solution x̆ with x́(ϱ) = x̆(ϱ) for all ϱ ∈ G \ {ρ, g} and x̆(ρ) ∈ F (ρ)(x́(ρ)), for some group ρ ∈ G(−g).

Therefore, Corollary 2 implies that it suffices to calculate the CEIs of solutions in D∪F to find a solution

with the largest CEI in X because for some solution with the largest CEI in X \ (D ∪F) = U \ F , there

exists a solution in F with a larger CEI. Thus, a solution with the largest CEI in F has a relatively large—

typically the largest—CEI in U . Further, following Relation (R1), the CEIs of solutions in F ⊆ U with

the same first g − 1 components are identical. Therefore, it is sufficient to calculate the CEIs of solutions

in D ∪ F̌ to obtain promising first g − 1 components, where F̌ ⊆ F includes only one solution for each

first g − 1 components. Since D ∪ F̌ is much smaller than X , the reduction in computational overhead is

huge, especially when the number of feasible solutions is very large; computational analysis conducted in

Section 5 shows this tremendous benefit.

Despite the significant computational savings from using Pareto frontiers, DASSO stills encounters a limit

on the problem size it can handle because the size of F̌ increases exponentially in the number of groups.

To extend DASSO beyond this limit, a heuristic approach can keep the number of CEI calculations compu-

tationally feasible. In particular, F can be alternatively constructed as
{
x∈ U :x(ρ) ∈ F̀ (ρ), ∀ρ∈ G(−g)

}
,

where F̀ (ρ) is some subset of X (ρ) chosen heuristically at a desired size. We employ this approach in our

numerical experiments in Section 5 when
{
x∈ U :x(ρ) ∈F (ρ), ∀ρ∈ G(−g)

}
is too large to handle directly.
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Computing CEIs requires the diagonal elements of [Q̄(ρ)]−1, the column of [Q̄(ρ)]−1 corresponding to x̃,

and m(ρ), for each ρ∈ G. Instead of inverting Q̄(ρ) to obtain these elements, we use the block matrix inver-

sion formula (Lemma EC.2 in Section EC.1 in the e-companion) to compute the elements more efficiently.

Letting Σ̌DD =ΣDD +Σϵ, we have

[Q̄(ρ)]−1 =

ˆ

[Q
(ρ)
UU ]

−1 + [Q
(ρ)
UU ]

−1Q
(ρ)
UDS

(ρ)Q
(ρ)
DU [Q

(ρ)
UU ]

−1 −[Q
(ρ)
UU ]

−1Q
(ρ)
UDS

(ρ)

−S(ρ)Q
(ρ)
DU [Q

(ρ)
UU ]

−1 S(ρ)

˙

,

and thus

m(ρ) =

˜

−[Q
(ρ)
UU ]

−1Q
(ρ)
UDS

(ρ)[T
(ρ)
DD]

⊤E(ρ)
`

ȲD −µD
˘

S(ρ)[T
(ρ)
DD]

⊤E(ρ)
`

ȲD −µD
˘

¸

,

where S(ρ) = Σ
(ρ)
DD − Σ

(ρ)
DD[T

(ρ)
DD]

⊤Σ̌−1
DDT

(ρ)
DDΣ

(ρ)
DD is the inverse of the Schur complement of Q

(ρ)
UU in

[Q̄(ρ)]−1, for ρ∈ G(−g). Also, we have

[Q̄(g)]−1 =

ˆ

σ2
gI|U| 0|U|×|D|

0|D|×|U| S(g)

˙

, and thus m(g) =

ˆ

0⃗|U|
S(g)E(g)

`

ȲD −µD
˘

˙

,

where S(g) = σ2
gI|D| −

`

σ2
g

˘2
Σ̌−1

DD is the inverse of the Schur complement of Q
(g)
UU in [Q̄(g)]−1, making

S(g)E(g) = I|D| − 1
σ2
g
S(g). Further, to compute E(ρ) more efficiently for ρ ∈ G(−g), we use the Woodbury

matrix identity (Lemma EC.1 in Section EC.1 in the e-companion):

E(ρ) = Σ̌−1
DD + Σ̌−1

DDT
(ρ)
DD

´

[Σ
(ρ)
DD]

−1 − [T
(ρ)
DD]

⊤Σ̌−1
DDT

(ρ)
DD

¯−1

[T
(ρ)
DD]

⊤Σ̌−1
DD.

This is more efficient than inverting ΣDD − T
(ρ)
DDΣ

(ρ)
DD[T

(ρ)
DD]

⊤ +Σϵ of size |D| × |D| for each ρ ∈ G(−g)

because it requires inverting two matrices of size |D(ρ)| × |D(ρ)| for each ρ ∈ G(−g) in addition to inverting

Σ̌DD of size |D| × |D| only once. Since |D(ρ)| is bounded by n(ρ) and |D|, and the increase on |D(ρ)| is

more slowly than the increase on |D| as the algorithm iterates, the benefit is greater in the later stages.

5. Numerical Experiments

In this section, we empirically evaluate the performance of DASSO, investigate its sensitivity to properties

of the objective function, and explore the importance of the chosen decomposition. A key feature of the

DASSO prior is that it is consistent even with non-separable objective functions, but one might expect that

a separable objective function, if one knows the proper separation, would be favorable.

For the numerical experiments we consider four examples: The first two examples are optimization of

the high-dimensional Zakharov and Styblinski-Tang test functions with added stochastic noise. The third

is a multi-product inventory problem which can be considered as a practical DSO problem with knowl-

edge about a natural decomposition. The last is a stylized problem allowing control of how separable the

objective function is. Recall that lack of separability—i.e., the contribution of the remainder term in the

decomposition—is addressed in the slice stage, so these experiments assess the effectiveness of slicing.

While these problems are all high-dimensional with large numbers of feasible solutions, they are not compu-

tationally expensive simulations. This allows us to run many long macroreplications that show convergence
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behaviors, which we would not expect to do in practice. Therefore, our computation-time analysis is effec-

tively an assessment of algorithm overhead, not simulation time.

In all experiments the parameters of the GMRF are estimated from s initial design points chosen by

Latin hypercube sampling and sg additional design points selected to augment these s initial design points;

this is the minimum number of additional points needed to parameterize the g groups plus remainder prior.

See Section EC.5 in the e-companion for details of parameter estimation. All s(g + 1) design points are

simulated for r0 replications. However, for better comparison in different settings, the DASSO search is

initialized from only the s initial design points, which are common with the same simulation outputs for all

settings. Each time a solution is selected, it is simulated rd replications if it has been simulated previously

and ru replications otherwise. For the experiments, s= 100 and r0 = rd = ru = 10 in Section 5.1, s= 200

and r0 = rd = ru = 10 in Section 5.2, and s = 15, r0 = 20, rd = 4, and ru = 10 in Sections 5.3 and 5.4.

These are largely arbitrary choices and there is likely room for a more data-driven selections, a topic we

reserve for future work. All computations are executed on a desktop computer with a Windows 10 operating

system, a 2.9 GHz Intel Core i7 CPU, 32 GB of RAM, 8 cores and 16 logical processors.

5.1. Well-Known Test Functions

The k-dimensional Zakharov function y(x1, x2, . . . , xk) =
∑k

i=1 x
2
i +

´∑k

i=1 0.5ixi

¯2

+
´∑k

i=1 0.5ixi

¯4

is often used as a test case in BO as it presents a very challenging problem. The function is minimized

at x = (0,0, . . . ,0)⊤. Letting X = {−2,−1,0,1,2}10 be the set of feasible solutions, the 10-dimensional

Zakharov function takes values between [0,9.15× 106] and has around 9.8 million feasible solutions. To

make the problem stochastic, we add zero-mean normally distributed noise with variance 1.82 to objective

function values. We also considered different levels of stochastic noise with variances 2.62, 3.92, and 5.22,

but chose not to exhibit the results because they show similar performance.

The k-dimensional Styblinski-Tang function y(x1, x2, . . . , xk) =
1
20

∑k

i=1(x
4
i − 16x2

i + 5xi) is another

standard test case. Letting X = {−6,−3,0,3,6}10 be the set of feasible solutions, the 10-dimensional

Styblinski-Tang function takes values between [−39,375] and is minimized at x= (−3,−3, . . . ,−3)⊤. We

add zero-mean normally distributed noise with variance 32 to objective function values.

We use these two problems to compare the performance of DASSO to pGMIA proposed by Li and Song

(2024), the current state-of-the-art for high-dimensional DSO problems, and Bounce (Bayesian optimization

using increasingly high-dimensional combinatorial and continuous embeddings) proposed by Papenmeier

et al. (2023), a high-dimensional BO algorithm optimizing over combinatorial, continuous, or mixed spaces.

pGMIA was shown empirically to outperform the multi-resolution GMIA of Salemi et al. (2019) and four

state-of-the-art high-dimensional BO algorithms: Random EMbedding Bayesian Optimization (Wang et al.

2016), Sparse Axis-Aligned Subspace Bayesian Optimization (Eriksson and Jankowiak 2021), and High-

Dimensional Bayesian Optimization and High-Dimensional Batch Bayesian Optimization (Wang et al.

2017). Thus, comparing DASSO with pGMIA indirectly assesses DASSO against these algorithms.
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Unlike DASSO, which decomposes the prior distribution into an additive form, pGMIA batches the

dimensions into two layers and hierarchically optimizes each layer by projecting one layer onto the other.

We note that pGMIA is implemented in MATLAB while DASSO is implemented in Python. Since pGMIA

with the random projection criterion (pGMIA-R) is observed to empirically outperform other benchmarks,

we compare DASSO to that version. In their numerical experiments, Li and Song (2024) set the numbers of

region- and solution-layer dimensions to 5 for pGMIA. The closest equivalence for DASSO is a decompo-

sition consisting of two 5-dimensional groups. Let G5 denote such a decomposition with the sets of compo-

nent indices being g(1) = {1,2,3,4,5} and g(2) = {6,7,8,9,10}. This assignment of component indices to

groups is arbitrary, and when we tried other assignments we observed no difference in performance.

Papenmeier et al. (2023) demonstrate that Bounce empirically outperforms five state-of-the-art algo-

rithms designed for combinatorial, continuous, or mixed input domains: BO with Dictionaries (Desh-

wal et al. 2023), CAtegorical Spaces, or Mixed, OPtimisatiOn with Local-trust-regIons & TAilored

Non-parametric (Wan et al. 2021), COMbinatorial Bayesian Optimization (Oh et al. 2019), Sequential

Model-based Algorithm Configuration (Hutter et al. 2011), and Random Decomposition Upper-Confidence

Bound (Ziomek and Ammar 2023). To address the computational burden of high-dimensional BO, Bounce

defines a GP surrogate in an iteratively refined lower-dimensional subspace called the target space, and max-

imizes the acquisition function within promising regions of the target space by using a trust-region-based

method. Bounce is also implemented in Python.

Bounce is not designed to handle stochastic output, unlike DASSO and pGMIA that are specifically

created to be effective on such problems. Therefore, whenever a solution is queried by Bounce, we run

10 replications and treat their average as deterministic response. To align Bounce as closely as possible to

DASSO with decomposition G5, we set its initial target dimensionality to 5.

Applications of large-scale, high-dimensional DSO typically exist between two extremes: Simulations

that execute so slowly that even substantial optimization algorithm overhead is negligible relative to simu-

lation time, and simulations that execute so fast that algorithm overhead is the bottleneck to computational

feasibility. Tongarlak et al. (2010) is an example of the former (20 replications of a single feasible solu-

tion took 8 hours), and the Zakharov and Styblinski-Tang functions are examples of the latter. DASSO is

designed to be effective when the number of feasible solutions or replications to simulate is computationally

limited (i.e., the simulation is very slow), while imposing much less algorithm overhead than other methods.

To see this, Figures 3 and 4 show the mean optimality gap of the 10-dimensional Zakharov and Styblinski-

Tang functions, respectively, as the distance from the optimal value versus the total number of simulation

replications (left) and versus the wall-clock time (right), averaged over 100 macro-replications of DASSO,

pGMIA, and Bounce. When each simulation replication takes significant time it is more critical to make

rapid improvement in the objective value with fewer replications. On the other hand, when each sim-

ulation replication is very fast, the computational overhead of the algorithm matters. The figures show
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Figure 3 Mean optimality gap of the Zakharov function vs. total number of replications and wall-clock time across 100 macro-

replications for DASSO (blue solid line) with decomposition G5, pGMIA (orange dashed line), and Bounce (green

dotted line). The shaded area around each curve shows point-wise ±2 standard error of the average.

1000 2000 3000 4000 5000 6000 7000
0

5

10

15

20

25

30

35

40
DASSO
pGMIA
Bounce

Total number of replications

M
ea

n
op

tim
al

ity
ga

p

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40
DASSO
pGMIA
Bounce

Wall-clock time (in seconds)

Figure 4 Mean optimality gap of the Styblinski-Tang function vs. total number of replications and wall-clock time across 100

macro-replications for DASSO (blue solid line) with decomposition G5, pGMIA (orange dashed line), and Bounce

(green dotted line). The shaded area around each curve shows point-wise ±2 standard error of the average.

that DASSO outperforms pGMIA and Bounce in terms of progress per replication for both Zakharov and

Styblinski-Tang. In terms of progress per second, DASSO is the best for Zakarov and slightly lags pGMIA

for Styblinski-Tang after a faster start. Since the experimental settings are the same, the difference in per-

formance between these test functions can be attributed to different objective functions. For our target

applications of DASSO the initial rapid decrease in the optimality gap is what we desire; we do not expect to

achieve anything like convergence when the simulation is high-dimensional and computationally expensive.

5.2. A Higher-Dimensional Test Function

To evaluate the performance of DASSO in problems of significantly higher dimension, we compare it to

pGMIA+ (Li and Song 2024), a multi-layer extension of pGMIA for higher-dimensional problems. We test

the 100-dimensional Zakharov function with X = {−5,−4, . . . ,5}100 which takes values between [0,2.54×
1016]. To make the problem stochastic, we add zero-mean normally distributed noise with variance 1.82 to

objective function values.

In numerical experiments for pGMIA+, Li and Song (2024) set the numbers of dimensions in the first

two layers to 3 leaving the 94 dimensions to the last. The sampling decisions in the first two layers are made
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Figure 5 Mean optimality gap of the 100-dimensional Zakharov function vs. total number of replications and wall-clock time

across 100 macro-replications for DASSO (blue solid line) with decomposition G3 and pGMIA+ (orange dashed line).

The shaded area around each curve shows point-wise ±2 standard error of the average.

by maximizing the CEI while the coordinates in the remaining 94 dimensions are selected randomly. The

closest correspondence for DASSO is a decomposition consisting of thirty-two 3-dimensional groups and

two 2-dimensional groups. Let G3 denote such a decomposition with the sets of component indices being

g(i) = {3i− 2,3i− 1,3i} for i = 1,2, . . . ,32, g(33) = {97,98}, and g(34) = {99,100}. Furthermore, since

the problem size makes the exact CEI maximization computationally infeasible in each dice stage, F is

heuristically constructed as
{
x∈ U :x(ρ) ∈ F̀ (ρ), ∀ρ∈ G(−g)

}
, where F̀ (ρ) is the Pareto frontier F (ρ) for

two randomly chosen ρs in G(−g) and a single randomly chosen point from X (ρ) for the remaining thirty-one

groups. This is a heuristic modification with the goal to demonstrate feasibility for DASSO to tackle even

higher-dimensional problems.

Figure 5 shows the mean optimality gap of the 100-dimensional Zakharov function as the distance from

the optimal value versus the total number of simulation replications (left) and versus the wall-clock time

(right), averaged over 100 macro-replications of DASSO and pGMIA+. In terms of progress per replication

in this example, DASSO and pGMIA+ outperform each other at different points while in the later itera-

tions, pGMIA+ appears to have smaller optimality gap on average (although statistically indistinguishable

from DASSO) with smaller run-to-run variability. Considering the range of the function, 2.54× 1016, the

optimality gap (approximately 1000) after 7500 replications is negligible for both algorithms. In terms of

progress per second, the large number of groups in DASSO causes computational overhead, making the

algorithm iterate slower than pGMIA+. If simulation overhead was more substantial, rather than negligible

as it is for simulating the Zakharov function, the difference would be less.

5.3. Inventory Problem

Consider a multi-product inventory problem where each product follows an (s,S) policy, i.e., once the

inventory level of product ρ falls below its reorder point, s(ρ), an order is given to bring the inventory level up

to S(ρ). This problem is a variant of the single-product version in Salemi et al. (2019), where the product is

subject to periodic demand that follows a Poisson distribution and the optimal policy is (s,S−s) = (18,35)
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Figure 6 (a) Mean optimality gap vs. total number of replications and (b) mean number of CEI calculations at each dice stage

across 30 macro-replications for the natural decomposition in the inventory problem.

under the objective of minimizing the expected average cost per period over a fixed planning horizon. Simi-

larly, in our version, demand for each product follows a common Poisson distribution and the objective is to

minimize the expected value of cost defined as y(x) =
∑

ρ∈G y
(ρ)(x(ρ)) + y(r)(x), where y(ρ)(x(ρ)) repre-

sents the expected average cost per period for product ρ and y(r)(x) is a deterministic interaction term that

depends on how much feasible solution x deviates from the optimal solution. In other words, we induce an

interaction so that the problem is not separable. Therefore, the optimal policy for each product is (s(ρ), S(ρ)−

s(ρ)) = (18,35), and the interaction term is y(r)(x) =
∏

ρ∈G

a

(s(ρ) − 18)2 +(S(ρ) − s(ρ) − 35)2. To treat

the feasible region as a hyperbox defined on the integer lattice, we let x(ρ) = (s(ρ), S(ρ) − s(ρ)) for ρ ∈ G

and x= {(s(ρ), S(ρ) − s(ρ))}ρ∈G .

The natural decomposition for this multi-product inventory problem is that each group represents a prod-

uct, and thus is 2-dimensional, one dimension is for s(ρ) and the other is for S(ρ) − s(ρ). We consider a

5-product (i.e., 10-dimensional) problem where the feasible region is defined by constraints 10≤ s(ρ) ≤ 34

and 20≤ S(ρ) − s(ρ) ≤ 44, which leads to n= 2510 = 95,367,431,640,625 feasible solutions. In the exper-

iments, we set the number of macro-replications to 30 and the total number of replications to 7500, i.e.,

DASSO terminates after obtaining this number of simulation outputs.

Figure 6a depicts the mean optimality gap as a percentage versus total number of replications for 30

macro-replications of the inventory problem with the natural decomposition. Before DASSO starts perform-

ing dice and slice stages, the mean optimality gap of the sample-best solution among the first s= 15 initial

design points is around 85%; recall that these design points are chosen by Latin hypercube sample and

simulated for 20 replications. Clearly DASSO obtains rapid improvement: it only takes exploring around

145 (or 38) design points and simulating 2500 (or 650) replications in total to have the mean optimality gap

below 1.5% (or 5%). Considering the very large scale of the problem, with more than 95 trillion feasible

solutions, the design points explored by the algorithm to obtain such small optimality gaps is an amazingly

tiny portion of the feasible solution set.
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Recall from Section 4.6 that rather than performing CEI calculation for all 95 trillion feasible solutions at

each dice stage, it is sufficient to calculate the CEIs of solutions from the Pareto set D∪F̌ . To illustrate how

much smaller |D ∪ F̌| is than the number of feasible solutions n= |X |, Figure 6b shows the mean number

of CEI calculations performed, i.e., |D ∪ F̌|, at each dice stage averaged over 30 macro-replications of the

inventory problem with the natural decomposition. Although the mean number of CEI calculations varies

from one dice stage to another, it is no greater than 989 thousand, which is around one hundred-millionth

of the number of feasible solutions, i.e., |D ∪ F̌| ≤ 10−8n. Without such a reduction in the number of CEI

calculations it would be computationally impossible to solve a problem of this scale.

The mean total CPU times spent to perform three different tasks—simulation execution, slice stage, and

dice stage—averaged over 30 macro-replications of the inventory problem with the natural decomposition

are as follows; recall that the algorithm stops after simulating 7500 replications. It takes around 347 CPU

seconds (5.8 CPU minutes) on average to run a single macro-replication: 251 seconds for the dice stage, 79

seconds for the slice stage, and 17 seconds for the simulation executions. The dice and slice stage times are

independent of the simulation time, which is abnormally small in this constructed example. In other words,

even if the simulation took orders of magnitude longer the DASSO algorithm overhead would be the same.

These results indicate that DASSO is not only effective but also efficient to solve very large-scale problems.

The results above are for the natural decomposition, where each group represents a product. To explore

the importance of decomposition, in addition to the natural one, we consider 10 alternative decompositions

with five 2-dimensional groups; notice that the decompositions are the same size. These additional decom-

positions are different from the natural one in a way that at least one group represents either (s(ρ), S(ϱ) −

s(ϱ)), or (s(ρ), s(ϱ)), or (S(ρ) − s(ρ), S(ϱ) − s(ϱ)), for some ρ ̸= ϱ. Figure 7 illustrates the mean optimality

gap as a percentage versus total number of replications for 30 macro-replications of the inventory problem

with various decompositions. The results indicate that the performance of DASSO with some alternative

decompositions is statistically indistinguishable from that achieved with the natural one, suggesting that an

alternative decomposition can be used when there is no knowledge about a natural decomposition. In the

next section, we further explore the importance of decomposition.

5.4. Controlled Test Function

Consider the objective function y(x) = (1−α)
∑

ρ∈G y
(ρ)(x(ρ))+αλy(r)(x) for x∈X , where X = {x,x+

1, . . . , x − 1, x}d for some integers x and x and dimension d. The role of α ∈ [0,1] is to control how

close to separable the objective function is, or equivalently, how much the remainder matters. Let each

y(ρ)(·) for ρ ∈ G and y(r)(·) be an inverted multivariate normal density function with a shift, generically

defined as f(x1, x2, . . . , xk) = −γ1 exp
{
−γ2

∑k

i=1 ix
2
i

}
+ γ1, where γ1 = 1000 and γ2 = 0.001; notice

that k = d(ρ) for each ρ ∈ G and k = d for the remainder term. The function is minimized at xi = 0 for

i= 1,2, . . . , k, and thus, y(x) is also minimized at x= (0,0, . . . ,0)⊤. The shifting term makes the optimal



26 Dice and Slice Simulation Optimization for High-Dimensional Discrete Problems

300 1000 2000 3000 4000 5000 6000 7000 7500
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

Total number of replications
M

ea
n

op
tim

al
ity

ga
p

Figure 7 Mean optimality gap vs. total number of replications across 30 macro-replications for 11 different decompositions

in the inventory problem. The blue solid line represents the natural decomposition while each orange dashed line

represent an alternative decomposition.

objective function value 0 regardless of the value of α. To have the same range of y(·) for any α, we

set λ =
∑

ρ∈G y
(ρ)(x(ρ)⋆)/y(r)(x⋆) with solution x⋆ that maximizes the objective function. We consider

a 12-dimensional problem with d(ρ) = 2 for ρ ∈ G = {1,2, . . . ,6}, where the sets of component indices

are g(1) = {1,2}, g(2) = {3,4}, g(3) = {5,6}, g(4) = {7,8}, g(5) = {9,10}, and g(6) = {11,12}; recall that

x(ρ) = (xi)i∈g(ρ) . Letting x=−2 and x= 2, the objective function values range between [0,71.57], and the

total number of feasible solutions is n= 512 = 244,140,625. To make the problem stochastic, a zero-mean

normally distributed noise with variance 32 is added to the objective function values.

Slightly abusing notation, let G2 denote the decomposition that consists of g(1) = {1,2}, g(2) = {3,4},

g(3) = {5,6}, g(4) = {7,8}, g(5) = {9,10}, and g(6) = {11,12}; we use the subscript to indicate that each

group is 2-dimensional. We treat G2 as a natural decomposition since it defines the objective function. We

also consider three alternative decompositions: G1 consists of g(ρ) = {ρ} for ρ= 1,2, . . . ,12; G3 consists of

g(1) = {1,2,3}, g(2) = {4,5,6}, g(3) = {7,8,9}, and g(4) = {10,11,12}; and finally G4 consists of g(1) =

{1,2,3,4}, g(2) = {5,6,7,8}, and g(3) = {9,10,11,12}. G4 is also a natural decomposition because there is

no interaction among groups.

Figure 8 depicts the mean optimality gap as a distance from the optimal value versus total number of

replications averaged over 50 macro-replications of the stylized problem for α∈ {0,0.5,1} with decompo-

sitions G1, G2, G3, and G4. Although G4 shows rapid improvement in the early stages of the algorithm, it

fails to close the gap as fast as the other decompositions. On the other hand, G1 performs the best. Even for

α= 0, where the objective function value is fully separable, the natural decompositions G2 and G4 do not

show a better performance than G1. For α= 1, where the objective function value is not even approximately

separable, DASSO still performs well with a good choice of decomposition, such as G1, G2 or G3.

We note that the discussion above ignores the computation time overhead of DASSO and focuses on the

total number of replications. One might expect that decompositions with smaller-size groups are computa-

tionally faster, and thus G1 should be the ideal decomposition. However, this is not the case based on Table 1

because G1 is much slower than the other decompositions. The table exhibits the mean CPU times spent to
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(b) α= 0.5
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(c) α= 1

Figure 8 Mean optimality gap vs. total number of replications across 50 macro-replications for 4 different decompositions in

the stylized problem with various α values. The red dashed, blue solid, orange dash-dotted, and green dotted lines

represent G1, G2, G3, and G4, respectively.

Table 1 Mean CPU times (in seconds) spent for performing three different tasks across 50 macro-replications for 4 different

decompositions in the stylized problem with α= 0. The percentages in parentheses represent the proportion of each task to total

time.

Task G1 G2 G3 G4

Simulation 1.5 (0.2%) 2.3 (4.5%) 2.5 (3.9%) 4.2 (2.5%)
Slice stage 4.6 (0.7%) 10.3 (20.0%) 15.2 (24.0%) 80.8 (47.7%)
Dice stage 698.7 (99.1%) 38.9 (75.5%) 45.7 (72.1%) 84.5 (49.8%)

All 704.8 (100%) 51.5 (100%) 63.4 (100%) 169.5 (100%)

perform three different tasks—simulation execution, slice stage and dice stage—as well as the total time

across 50 macro-replications for decompositions G1, G2, G3, and G4 in the stylized problem with α = 0;

recall that the algorithm stops after simulating 7500 replications.

The time spent to perform the slice stages increases as the size of the groups increases, whereas that of the

dice stages does not show the same trend. This is mainly because G1 requires many more CEI calculations:

the mean number of CEI calculations in each dice stage varies between 72 thousand to 5 million for G1, 3.7

thousand to 49 thousand for G2, 1.3 thousand to 5.4 thousand for G3, and 103 to 1.2 thousand for G4. This

result also illustrates the importance of the reduction of the number of CEI calculations.

To further investigate the importance of decomposition, we consider two more decompositions with the

same size as G2, i.e., they also consists of six 2-dimensional groups. The sets of component indices for the
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(b) α= 0.5
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Figure 9 Mean optimality gap vs. total number of replications across 50 macro-replications for 3 different decompositions in

the stylized problem with various α values. The blue solid, green dash-dotted, and red dotted lines represent G2, Ĝ2,

and G̃2, respectively.

first one, denoted by Ĝ2, are g(1) = {1,10}, g(2) = {5,8}, g(3) = {2,7}, g(4) = {4,11}, g(5) = {3,9}, and

g(6) = {6,12}. The sets of component indices for the second one, denoted by G̃2, are g(1) = {1,7}, g(2) =

{2,6}, g(3) = {3,8}, g(4) = {4,10}, g(5) = {5,12}, and g(6) = {9,11}. Figure 9 depicts the mean optimality

gap as a distance from the optimal value versus total number of replications for 50 macro-replications of

the stylized problem for α∈ {0,0.5,1} with decompositions G2, Ĝ2, and G̃2.

All decompositions work well. For α = 0, where the objective function values are fully separable, the

natural decomposition G2 is outperformed by G̃2, which is not a natural decomposition. On the other hand,

for α = 1, where the objective function values are not separable at all, the behavior is the opposite, that

is, G2 outperforms G̃2. These results suggest that the natural decomposition is not necessarily the best one,

aligned with the results in Section 5.3, but DASSO is robust to the choice.

6. Conclusion

In this paper, we proposed DASSO to tackle high-dimensional DSO problems. DASSO decomposes the

prior distribution into an additive form, reducing the problem dimensionality to facilitate efficient posterior

updates. This decomposition makes the search much more efficient and computationally possible by avoid-

ing the CEI calculation for each feasible solution: we showed that it is sufficient to calculate the CEIs of

only small fraction of solutions at a dice stage. Our numerical results revealed the effectiveness and efficien-

cies of DASSO on very large-scale problems: it can obtain rapid improvement on a problem with more than
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a trillion feasible solutions within a couple of minutes of algorithm overhead. Furthermore, it empirically

outperforms the state-of-the-art high-dimensional DSO algorithm pGMIA and BO algorithm Bounce.

Future research includes improving the performance of DASSO via an adaptive stopping condition for

the slice stage, inventing a principled way to update the identity of the last group, and exploiting parallel

computing: it is easy to parallelize replications for simulating the sample-best and best-CEI solutions and

computation of the posterior distributions and Pareto frontiers for each group can also be parallelized.

Attaining greater benefit from fast computational linear algebra is also relevant future work. Lastly, although

we show that DASSO is capable of tackling a 100-dimensional problem, sampling decisions in the dice

stage can be improved from the heuristic we demonstrated here.
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Electronic Companion to Dice and Slice Simulation Optimization

EC.1. Useful Lemmas

LEMMA EC.1 (The Woodbury Matrix Identity).

(A+CBC⊤)−1 =A−1 −A−1C(B−1 +C⊤A−1C)−1C⊤A−1,

where A, B and C are conformable matrices.

LEMMA EC.2 (The Block Matrix Inversion).

Q−1 =

ˆ

A B
B⊤ C

˙−1

=

ˆ

A−1 +A−1B(Q/A)−1B⊤A−1 −A−1B(Q/A)−1

−(Q/A)−1B⊤A−1 (Q/A)−1

˙

,

where A and C are invertible block matrices, B is conformable with them for partitioning and Q/A =

C −B⊤A−1B is the Schur complement of A in Q.

EC.2. Proofs

Proof of Proposition 1 Suppose that P{X=x}=
∏d

i=1P{Xi = xi}, ∀x= [x1, x2, . . . , xd]
⊤ ∈ X , and

P{Xi = x}= 1/ni, ∀x∈Xi, for each component dimension Xi of X. Thus, P{X=x}= 1/n, ∀x∈X .

(a) E ry(X)s =
∑

x∈X P{X=x}y(x) =
∑

x∈X y(x)/n= ȳ.

(b) The proof is by induction on u. Let u= {i} for some i ∈ d. Then, replacing {i} with i for notational

convenience,

E ryi(X)s =E

»

–

1

n−i

∑
x−i∈X−i

(y(X)− ȳ)

fi

fl =
1

n−i

∑
x−i∈X−i

(E ry(X)s− ȳ) = 0

since E ry(X)s = ȳ from (a). Now, suppose that E ryv(X)s = 0 for all v⊂ u with v ̸= ∅. Then,

E ryu(X)s =E

»

–

1

n−u

∑
x−u∈X−u

¨

˝y(X)−
∑

v⊂u:v̸=∅

yv(X)− y∅(X)

˛

‚

fi

fl

=
1

n−u

∑
x−u∈X−u

¨

˝E ry(X)s−
∑

v⊂u:v̸=∅

E ryv(X)s− ȳ

˛

‚

=
1

n−u

∑
x−u∈X−u

(ȳ− ȳ) = 0,

completing the induction.

(c) Consider subsets u,v⊆ d with u ̸= v. Without loss of generality, suppose v⊂ u. Using the law of total

expectation, E ryu(X)yv(X)s =E rE ryu(X)yv(X) |Xvss =E rE ryu(X) |Xvsyv(X)s since yv(X) depends on

X only through Xv. Since E ryu(X) |Xvs = 0 from (b), we have E ryu(X)yv(X)s = 0.

(d) Var ry(X)s = Var
”∑

u⊆d
yu(X)

ı

=
∑

u⊆d
Var ryu(X)s since yu(X) and yv(X) are uncorrelated for

u ̸= v from (c). ˝
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Proof of Theorem 1 To establish the conditional distribution of (Y(ρ)
U ,Y(ρ)

D ) given observed Yϵ
D, for

each ρ ∈ G, we follow similar steps as in Salemi et al. (2019). We first derive the joint distribution of

(Y(ρ)
U ,Y(ρ)

D ,Yϵ
D) and then apply Lemma 2.1 of Rue and Held (2005).

Since Y(ρ) is a GMRF and independent of the intrinsic noise, Y(ρ)
U and Yϵ

D are conditionally independent,

given Y(ρ)
D . From Theorem 2.5 in Rue and Held (2005), the conditional distribution of Y(ρ)

U given Y(ρ)
D = y

(ρ)
D

is

N
´

−[Q
(ρ)
UU ]

−1Q
(ρ)
UDy

(ρ)
D , [Q

(ρ)
UU ]

−1
¯

.

From the definition of Yϵ
D and the independence assumption, the conditional distribution of Yϵ

D given Y(ρ)
D =

y
(ρ)
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DDy
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¯

.

Recall E(ρ) =
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. Moreover, using standard results for the inverse of a

partitioned matrix,
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Then, the joint distribution f(y
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D

¯ı}
.

A significant quantity of matrix algebra leads to

f(y(ρ)
U ,y(ρ)

D ,yϵ
D)∝ exp

−1

2

¨

˝

y(ρ)
U

y(ρ)
D
yϵ
D

˛

‚

⊤ ¨

˝

Q(ρ)
UU Q(ρ)

UD 0|U(ρ)|×|D|

Q(ρ)
DU Q(ρ)

DD + [T (ρ)
DD]

⊤E(ρ)T (ρ)
DD −[T (ρ)

DD]
⊤E(ρ)

0|D|×|U(ρ)| −E(ρ)T (ρ)
DD E(ρ)

˛

‚

¨

˝

y(ρ)
U

y(ρ)
D
yϵ
D

˛

‚

+

¨

˝

y(ρ)
U

y(ρ)
D
yϵ
D

˛

‚

⊤ ¨

˝

0⃗|U(ρ)|

−[T (ρ)
DD]

⊤E(ρ)µD
E(ρ)µD

˛

‚

 .

Finally, following Lemma 2.1 in Rue and Held (2005), the conditional distribution of Y(ρ) given Yϵ
D = yϵ

D

is as in the theorem’s statement. ˝

Proof of Theorem 2 To establish the conditional distribution of (W(g)
U ,W(g)

D ) given the observed Yϵ
D,

we follow similar steps as in Theorem 1. We first derive the joint distribution of (W(g)
U ,W(g)

D ,Yϵ
D) and then

apply Lemma 2.1 of Rue and Held (2005).

Since W(g) is independent of the intrinsic noise, W(g)
U and Yϵ

D are conditionally independent, given W(g)
D .

The conditional distribution of W(g)
U given W(g)

D =w
(g)
D is

N
´

0⃗|U|, σ
2
gI|U|

¯

.
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From the definition of Yϵ
D and the independence assumption, the conditional distribution of Yϵ

D given

W(g)
D =w

(g)
D is

N
´

µD +w
(g)
D , [E(g)]−1

¯

.

Recall that E(g) =
“

ΣDD −σ2
gI|D| +Σϵ

‰−1
. Moreover,

W(g)
D ∼N

´

0⃗|D|, σ
2
gI|D|

¯

.

Then, the joint distribution f(w
(g)
U ,w

(g)
D ,yϵ

D) satisfies

f(w
(g)
U ,w

(g)
D ,yϵ

D)∝ exp
{
− 1

2

1

σ2
g

[w
(g)
U ]⊤I|U|w

(g)
U

}
× exp

{
− 1

2

1

σ2
g

[w
(g)
D ]⊤I|D|w

(g)
D

}
× exp

{
− 1

2

”

yϵ
D −

´

µD +w
(g)
D

¯ı⊤
E(g)

”

yϵ
D −

´

µD +w
(g)
D

¯ı}
.

A significant quantity of matrix algebra leads to

f(w
(g)
U ,w

(g)
D ,yϵ

D)∝ exp

−1

2

¨

˝

w
(g)
U

w
(g)
D

yϵ
D

˛

‚

⊤ ¨

˚

˝

1
σ2
g
I|U| 0|U|×|D| 0|U|×|D|

0|D|×|U|
1
σ2
g
I|D| +E(g) −E(g)

0|D|×|U| −E(g) E(g)

˛

‹

‚

¨

˝

w
(g)
U

w
(g)
D

yϵ
D

˛

‚

+

¨

˝

w
(g)
U

w
(g)
D

yϵ
D

˛

‚

⊤ ¨

˝

0⃗|U|
−E(g)µD
E(g)µD

˛

‚

 .

Finally, following Lemma 2.1 in Rue and Held (2005), the conditional distribution of W(g) given Yϵ
D = yϵ

D

is as in the theorem’s statement. ˝

Proof of Proposition 2 For x, x̆∈ U , notice that m(g)(x) =m(g)(x̆) = 0 as well as v(g)(x) = v(g)(x̆) =

σ2
g and c(g)(x̃,x) = c(g)(x̃, x̆) = 0 from the block-diagonal structure of Σ̄(g).

(R1) Suppose that x(ρ) = x̆(ρ) for all ρ ∈ G(−g). Then, m(x) =m(x̆) and v(x̃,x) = v(x̃, x̆), and thus

CEI px̃,xq =CEI px̃, x̆q.

(R2) Suppose for some group ρ∈ G(−g) that the following conditions hold:

(C2.1) x(ϱ) = x̆(ϱ) for all ϱ∈ G \ {ρ, g},

(C2.2) m(ρ)(x(ρ))≥m(ρ)(x̆(ρ)), and

(C2.3) v(ρ)(x̃(ρ),x(ρ))≤ v(ρ)(x̃(ρ), x̆(ρ)), where v(ρ)(x̃(ρ), ·) = v(ρ)(x̃(ρ))+ v(ρ)(·)− 2c(ρ)(x̃(ρ), ·).
Conditions (C2.1) and (C2.2) together imply that m(x) ≥ m(x̆). Conditions (C2.1) and (C2.3) together

imply that v(x̃,x)≤ v(x̃, x̆). Then, CEI px̃,xq ≤CEI px̃, x̆q from the fact that CEI px̃, ·q is decreasing in

m(·) and increasing in v(x̃, ·) as

∂CEI px̃,xq

∂m(x)
=−Φ

˜

m(x̃)−m(x)
a

v(x̃,x)

¸

< 0

and
∂CEI px̃,xq

∂v(x̃,x)
=

1

2
a

v(x̃,x)
ϕ

˜

m(x̃)−m(x)
a

v(x̃,x)

¸

> 0.

(R3) For x, x̆ ∈ D, suppose that x(ρ) = x̆(ρ) for all ρ ∈ G(−g), m(g)(x) ≥ m(g)(x̆), and v(g)(x̃,x) ≤
v(g)(x̃, x̆). These imply that m(x)≥m(x̆) and v(x̃,x)≤ v(x̃, x̆), leading to CEI px̃,xq ≤CEI px̃, x̆q. ˝
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EC.3. Global Convergence of DASSO

We establish the global convergence of DASSO in Theorem EC.1 under the very mild conditions in Assump-

tion EC.1 and a small tweak to the algorithm in Assumption EC.2.

ASSUMPTION EC.1. y(x)>−∞ and 0<Var rY (x)s <∞, for all x∈X .

ASSUMPTION EC.2. Each slice stage is performed for a finite number of iterations. Further, the prior

precision matrix of Y(ρ) is adjusted to be αtQ
(ρ) for ρ ∈ G(−g), where αt →∞ as t→∞, and t represents

a counter that advances with the number of iterations completed in the algorithm.

The first part of Assumption EC.2 is to avoid a failure to explore solutions with different values of the

first g − 1 components by getting stuck in a slice stage; this is easily enforced by the slice-stage stopping

criterion. The second part is to eventually eliminate the effect of the first g − 1 components as more sim-

ulation outputs are obtained; this can be achieved through multiplying the precision matrix by αt, which

diverges to infinity as the algorithm progresses (although this is not the only possible adjustment). Without

this assumption, the uncertainty caused by the model structure (as we observe the overall objective function

values, rather than individual values for each group) does not disappear, making the algorithm simulate only

a subset of solutions eventually without exploring the others. Theorem EC.1 guarantees the asymptotic con-

vergence of DASSO to the global optimum with probability one regardless of the choice of decomposition

and how the identity of the last group is updated.

THEOREM EC.1. Under Assumptions EC.1 and EC.2, the DASSO algorithm without a stopping condition

converges to the global optimum with probability one as the number of iterations goes to infinity.

We confess that Theorem EC.1 is strictly of academic interest, since we do not expect to approach any-

thing like convergence in the class of problems we consider.

EC.3.1. Proof

Recall that y(x) denote the objective function value at solution x ∈ X . Letting Xmin = {x ∈ X :y(x) =

ymin} denote the set of optimal solutions, where ymin = minx∈X y(x) is the optimal objective function

value, the aim is to find an optimal solution x ∈Xmin. We allow |Xmin| ≥ 1. To prove the theorem, we will

show that each solution will be simulated infinitely often with probability one as the number of iterations

goes to infinity. Then, the main result will follow by the strong law of large numbers.

We fix a sample path but suppress it in the notation. Let t denote the dice-stage iteration of the algorithm.

Without loss of generality, we set the number of slice-stage iterations for each dice stage to 1 and consider

t as the iteration of the algorithm as well. Moreover, without loss of generality, we assume that the identity

of the last group g is fixed. Or equivalently, since at least one group must be chosen as the last group

infinitely often, we consider a subsequence of iterations on which the identity of the last group g is one
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such a group chosen infinitely often. The statistics used to compute the posterior distribution and the CEI

values at iteration t are conditional on the simulation outputs obtained up to, but not including, iteration t.

To ease notation, we write these statistics with subscript t; for example, x̃t denotes the sample-best solution

at iteration t.

Let A⊂ D denote the set of the feasible solutions that will be simulated infinitely often in this sample

path, i.e., A = {x ∈ X : rt(x) → ∞ as t → ∞}. Since at least one solution must be simulated infinitely

often as t → ∞, A is non-empty. Assume that Ac = X \ A is also non-empty; notice that U ⊂ Ac since

A⊂D. Therefore, T , the last iteration at which a solution in Ac is simulated, is finite. Since the sample-best

solution x̃t is simulated at each dice stage, x̃t ∈A for all t > T . Although Dt and Ut change as t increases,

they remain the same for t > T . Therefore, we suppress the dependency of D and U on t for notational

simplicity.

Each slice stage employs the GMIA algorithm of Salemi et al. (2019). Since GMIA without a stopping

condition is proven to simulate each solution infinitely often with probability one, if the first g − 1 com-

ponents are fixed to z in the slice stage infinitely often, then all solutions in Xz = {x ∈ X :x(−g) = z} are

simulated infinitely often. That is, if x ∈ A \ {x̃t} for t > T , then x̆ ∈ A for all x̆ ∈ X such that x̆(−g) =

x(−g) and therefore simulated infinitely often. Alternatively, if x ∈ Ac, then x̆ ∈ Ac for all x̆ ∈ X \ {x̃t}

such that x̆(−g) = x(−g) for t > T . Therefore, none of the solutions in Ac is chosen in a dice stage after

iteration T , i.e., argmaxx∈X\{x̃t} CEIt px̃t,xq ̸∈ Ac, for t > T .

We need the following the asymptotic results for the conditional mean and conditional variance; the proof

is at the end of this section.

LEMMA EC.3. For x ∈ A, we have limt→∞ vt(x̃t,x) = 0 and limt→∞mt(x) = y(x). Assuming Ac ̸= ∅,

for x∈Ac, we have lim inft→∞ vt(x̃t,x)> 0.

Let yA
min = minx∈A y(x), and Amin = {x ∈ A:y(x) = yA

min}, the set of optimal solutions in A. Using

Lemma EC.3, we show that limt→∞mt(x̃t) = yA
min: If y(x) = yA

min for all x ∈ A, then it immediately

follows from Lemma EC.3 that mt(x̃t)→ yA
min as x̃t ∈ A for all t > T . If y(x) ̸= yA

min for some x ∈ A,

otherwise, let ε be a constant such that 0 < ε < minA\Amin
y(x)− yA

min. We can find such a constant as

there are only a finite number of feasible solutions in A. Since rt(x)→∞ as t→∞ for all x ∈ A, i.e.,

every solution in A is simulated infinitely often, there exists some T ∗ > T such that for all x ∈ A, we

have |ȲD,t(x) − y(x)| < ε/2 for t ≥ T ∗ by the strong law of large numbers. Then, by the definition of

x̃t = argminx∈A ȲD,t(x) for all t > T and the choice of ε, we have y(x̃t) = yA
min for all t≥ T ∗. Therefore,

together with Lemma EC.3, we have mt(x̃t)→ yA
min.

Recall that CEIt px̃t,xq in the dice stage for x∈X \ {x̃t} is

CEIt px̃t,xq = (mt(x̃t)−mt(x)) Φ

˜

mt(x̃t)−mt(x)
a

vt(x̃t,x)

¸

+
a

vt(x̃t,x) ϕ

˜

mt(x̃t)−mt(x)
a

vt(x̃t,x)

¸

.
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Because CEIt px̃t,xq is a non-negative increasing function in mt(x̃t) − mt(x), and CEIt px̃t,xq →

0 as mt(x̃t) − mt(x) → −∞ provided limt→∞ vt(x̃t,x) > 0, Lemma EC.3 guarantees

lim inft→∞ CEIt px̃t,xq > 0 for x∈Ac. On the other hand, for x∈A, we have CEIt px̃t,xq → 0 as t→∞

by Lemma EC.3 since limt→∞ vt(x̃t,x) = 0 and limt→∞(mt(x̃t)−mt(x)) ≤ 0, which follows from the

fact that limt→∞mt(x̃t) = yA
min =minx∈A y(x). Hence, we will eventually have

min
x∈Ac

CEIt px̃t,xq >max
x∈A

CEIt px̃t,xq ,

and therefore, argmaxx∈X\{x̃t} CEIt px̃t,xq ∈Ac and DASSO would choose a solution in A.

However, this contradicts the existence of T . Hence, Ac is empty, and thus X = A and yA
min = ymin.

Therefore, together with the fact that mt(x̃t)→ yA
min, we conclude that mt(x̃t)→ ymin, as t→∞. Since

this will occur on almost all sample paths, the convergence is with probability 1.

Proof of Lemma EC.3 Under Assumption EC.2, Q(ρ)
t = αtQ

(ρ) for each group ρ ∈ G(−g). Then, since

E
(ρ)
t is non-negative and αt →∞ as t→∞,

Σ̄
(ρ)
t = [Q̄

(ρ)
t ]−1 → 0n(ρ)×n(ρ) , and thus m(ρ)

t → 0⃗n(ρ) . (EC.1)

Moreover, Σ(ρ)
DD,t =

1
αt
Σ

(ρ)
DD → 0|D|×|D|, and thus ΣDD,t → σ2

gI|D|, as t → ∞. Equation (EC.1) implies

that limt→∞mt(x) = limt→∞m
(g)
t (x) and lim inft→∞ vt(x̃t,x) = lim inft→∞[v

(g)
t (x̃t) + v

(g)
t (x) −

2c
(g)
t (x̃t,x)], for x∈X .

Let B =D \A; notice that X = U ∪A∪B. For t > T , reordering the elements of E(g)
t and Σϵ

t, we can

partition them as

E
(g)
t =

˜

E
(g)
BB,t E

(g)
BA,t

E
(g)
AB,t E

(g)
AA,t

¸

and Σϵ
t =

˜

Σϵ
BB,t 0|B|×|A|

0|A|×|B| Σϵ
AA,t

¸

,

respectively, where Σϵ
BB,t and Σϵ

AA,t are diagonal matrices whose diagonal element corresponding to solu-

tion x is S2
t (x)/rt(x). Notice that the diagonal element corresponding to x of Σϵ

BB,t is S2
T (x)/rT (x) for

t > T whereas that of Σϵ
AA,t converges to 0 as t→∞. Recall that E(g)

t =
“

ΣDD,t −σ2
gI|D| +Σϵ

t

‰−1
, where

ΣDD,t → σ2
gI|D| as t→∞. Therefore, the diagonal elements of E(g)

AA,t diverge to ∞ as t→∞.

Letting

Xt =

˜

XAcAc,t XAcA,t

X⊤
AcA,t E

(g)
AA,t

¸

=

¨

˚

˚

˝

0|U|×|U| 0|U|×|B| 0|U|×|A|

0|B|×|U| E
(g)
BB,t E

(g)
BA,t

0|A|×|U| E
(g)
AB,t E

(g)
AA,t

˛

‹

‹

‚

=

˜

0|U|×|U| 0|U|×|D|

0|D|×|U| E
(g)
t

¸

with

XAcAc,t =

˜

0|U|×|U| 0|U|×|B|

0|B|×|U| E
(g)
BB,t

¸

, and XAcA,t =

˜

0|U|×|A|

E
(g)
BA,t

¸

,
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we have Q̄
(g)
t = (σ2

g)
−1In +Xt. Let At = (σ2

g)
−1I|Ac| +XAcAc,t, Bt =XAcA,t, and Ct = (σ2

g)
−1I|A| +

E
(g)
AA,t denote the corresponding components of Q̄(g)

t . Using block matrix inversion, see Lemma EC.2 in

Section EC.1,

Σ̄
(g)
t = [Q̄

(g)
t ]−1 =

˜

At Bt

B⊤
t Ct

¸−1

=

˜

A−1
t +A−1

t Bt(Q̄
(g)
t /At)

−1B⊤
t A

−1
t −A−1

t Bt(Q̄
(g)
t /At)

−1

−(Q̄
(g)
t /At)

−1B⊤
t A

−1
t (Q̄

(g)
t /At)

−1

¸

,

where Q̄
(g)
t /At =Ct −B⊤

t A
−1
t Bt is the Schur complement of At in Q̄

(g)
t . Since the diagonal elements of

E
(g)
AA,t diverges to ∞ as t→∞, so do those of Ct. Therefore, we have (Q̄

(g)
t /At)

−1 → 0|A|×|A|, and thus

Σ̄
(g)
t →

˜

´

1
σ2
g
I|Ac| +XAcAc

¯−1

0|Ac|×|A|

0|A|×|Ac| 0|A|×|A|

¸

, (EC.2)

where XAcAc = limt→∞XAcAc,t. Moreover,

(Q̄
(g)
t /At)

−1E
(g)
AA,t =

«

E
(g)
AA,t +

1

σ2
g

I|A| −X⊤
AcA,t

ˆ

1

σ2
g

I|Ac| +XAcAc,t

˙−1

XAcA,t

ff−1

E
(g)
AA,t → I|A|,

and thus

[Q̄
(g)
t ]−1

˜

0|U|×|U| 0|U|×|D|

0|D|×|U| E
(g)
t

¸

= [Q̄
(g)
t ]−1Xt →

˜

´

1
σ2
g
I|Ac| +XAcAc

¯−1

XAcAc 0|Ac|×|A|

0|A|×|Ac| I|A|

¸

. (EC.3)

Since x̃t ∈A for all t > T , Equation (EC.2) implies that limt→∞ c
(g)
t (x̃t,x) = 0 for x∈X . It also implies

that limt→∞ v
(g)
t (x) = 0 for x ∈A while limt→∞ v

(g)
t (x)> 0 for x ∈Ac. Therefore, limt→∞ vt(x̃t,x) = 0

for x∈A while lim inft→∞ vt(x̃t,x)> 0 for x∈Ac.

Let kt be a vector whose element corresponding to solution x is 0 if x ∈ U and ȲD,t(x)− β0 otherwise,

i.e., if x∈D. Reordering the elements of kt, we can partition it as

kt =

˜

kAc,t

kA,t

¸

.

As t → ∞, kA,t → yA − β01⃗|A| by the strong law of large numbers whereas kAc,t = kAc for all t > T ,

where the element of kAc corresponding to solution x is 0 if x ∈ U and ȲD,T (x)− β0 otherwise, i.e., if

x∈B. Then, Equation (EC.3) implies that

m
(g)
t = [Q̄

(g)
t ]−1Xtkt →

¨

˝

´

1
σ2
g
I|Ac| +XAcAc

¯−1

XAcAckAc

yA −β01⃗|A|

˛

‚.

Recall from Equation (EC.1) that m(ρ)
t (x) → 0 as t → ∞ for all x ∈ X . Therefore, limt→∞mt(x) =

limt→∞

´

β0 +
∑

ρ∈G(−g) m
(ρ)
t (x)+m

(g)
t (x)

¯

= y(x) for x∈A. ˝
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EC.4. A Simple Example to Illustrate the Linear Dependence on the Rows of
Y without Y(r)

Consider a 2-dimensional problem with four solutions

X =

{ˆ

1
3

˙

,

ˆ

2
3

˙

,

ˆ

1
4

˙

,

ˆ

2
4

˙}
,

and decompose the objective function value into two groups with X (1) = {1,2} and X (2) = {3,4}. The

transformation matrices can be constructed as

T (1) =

¨

˚

˝

1 0
0 1
1 0
0 1

˛

‹

‚

and T (2) =

¨

˚

˝

1 0
1 0
0 1
0 1

˛

‹

‚

.

Then, without Y(r),

Y= β01⃗n +
∑
ρ∈G

T (ρ)Y(ρ) =

¨

˚

˚

˝

β0 +Y(1)(1)+Y(2)(3)
β0 +Y(1)(2)+Y(2)(3)
β0 +Y(1)(1)+Y(2)(4)
β0 +Y(1)(2)+Y(2)(4)

˛

‹

‹

‚

.

Notice that the rows of Y are linearly dependent; for example, the first row can be obtained by summing the

last two rows and subtracting the second row.

EC.5. Parameters

Recall that the additive GMRF model Y in (4) consists of location parameter β0, GMRF Y(ρ) for ρ∈ G(−g)

and random vector W(g). GMRF Y(ρ) is characterized by its precision matrix, Q(ρ). We use a vector θ(ρ)

of parameters to construct Q(ρ); see Section EC.5.1. On the other hand, random vector W(g) is character-

ized by only its variance σ2
g as it is a zero-mean random vector with covariance matrix σ2

gIn. Benefiting

from the additive structure of objective function values, we propose a strategy to choose the initial design

points in Section EC.5.2, and use the simulation outputs of the initial design points to estimate θ(ρ)’s and

σ2
g via maximum likelihood in Section EC.5.3. We discuss an alternative method that can estimate σ2

g in

Section EC.5.4.

In addition to the parameters mentioned above, the conditional distribution of Y given Yϵ
D = ȲD depends

on the covariance matrix, Σϵ, of the stochastic noise. We simulate all solutions independently (i.e., no com-

mon random numbers) so that Σϵ is a diagonal matrix whose diagonal element corresponding to solution x

is σ2(x)/r(x), where r(x) is the number of replications obtained at x. Since σ2(x) is unknown, the corre-

sponding diagonal element is estimated by S2(x)/r(x), where S2(x) =
∑r(x)

j=1

“

Yj(x)− ȲD(x)
‰2
/(r(x)−

1) is the sample variance estimate of σ2(x).
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EC.5.1. Precision Matrices of GMRFs

For each ρ ∈ G, we define the set of neighbors of x
(ρ)
i ∈ X (ρ) as N (ρ)(x

(ρ)
i ) = {x(ρ)

j ∈ X (ρ) : ∥x(ρ)
i −

x
(ρ)
j ∥2 = 1} as in Salemi et al. (2019), making Q(ρ) very sparse as the fraction of nonzero elements in

Q(ρ) is no more than (2d(ρ)+1)/n(ρ). The nonzero elements are specified by a vector of parameters θ(ρ) =

[θ
(ρ)
0 , θ

(ρ)
1 , θ

(ρ)
2 , . . . , θ

(ρ)

d(ρ)
]⊤; we suppress the dependency of Q(ρ) on θ(ρ) to simplify the notation. The (i, j)th

element of Q(ρ) is

[Q(ρ)]ij =


θ
(ρ)
0 , if i= j,

−θ
(ρ)
0 θ

(ρ)
l , if |x(ρ)

i −x
(ρ)
j |= el,

0, otherwise,

where el is the lth standard basis vector and |·| is the element-wise absolute value operator. Notice that θ(ρ)0

is the conditional precision of each point in the group, and thus it must be positive, i.e., θ(ρ)0 > 0. Also, notice

that θ(ρ)l is the conditional correlation between points that neighbor in the lth dimension, in the group. To

have nonnegative conditional correlations, we restrict the values of θ(ρ)1 , θ
(ρ)
2 , . . . , θ

(ρ)

d(ρ)
to be nonnegative,

i.e., θ(ρ)l ≥ 0 for all 1≤ l≤ d(ρ). Finally, to guarantee that Q(ρ) positive-definite, we force it to be diagonally

dominant, i.e.,
∑d(ρ)

l=1 θ
(ρ)
l < 0.5, which is sufficient but not necessary for positive definiteness.

EC.5.2. Construction of Initial Design Points

For the purpose of estimating the θ(ρ)’s via maximum likelihood in the next section, we approximate the

objective function values as being purely additive, i.e., y(r)(x) = 0 for all x ∈ X . This approximation

allows us to obtain values that depend only on a single group by taking the difference between objective

function values at certain feasible solutions. Notice that obtaining parameters in this way has no impact

on the convergence of DASSO; DASSO converges to the optimal solution for any set of legitimate GMRF

parameters. And, of course, the GMRF parameters are artifacts that facilitate BO; there are no “true” values.

Parameters obtained under this approximation are sufficient to capture local group-by-group behavior of the

objective function.

To construct such solutions, first consider a subset of feasible solutions, denoted by S. The size of

S, i.e., s = |S|, is the sample size used for estimation. For each solution x ∈ S, pick g solutions

(x−1,x−2, . . . ,x−g) such that x(ϱ) ̸= x
(ϱ)
−ρ if ϱ= ρ, and x(ϱ) = x

(ϱ)
−ρ otherwise, for ρ, ϱ ∈ G. In other words,

x and x−ρ differ only in their lower dimensional components corresponding to group ρ. Therefore, y(x)−

y(x−ρ) = y(ρ)(x(ρ)) − y(ρ)(x
(ρ)
−ρ), which depends only on group ρ (under the assumption stated above).

Thus, while estimating θ(ρ) for group ρ, we can focus on solution pairs {(x,x−ρ)}x∈S , that is, the differ-

ence between their objective function values, and disregard the other s(g− 1) solutions; notice that |D|=

s(g+1) initially and only 2s solutions are used to estimate θ(ρ). Of course, we need the other (disregarded)

solutions, but to create such pairs for the groups other than ρ.
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For x∈ S and ρ∈ G, let b(ρ) be a row vector of size 1× (g+1) whose elements are associated with solu-

tions (x,x−1,x−2, . . . ,x−g), where the elements corresponding to x and x−ρ are 1 and −1, respectively,

and the rest is 0. Notice that

b(ρ) [y(x), y(x−1), . . . , y(x−g)]
⊤ = y(x)− y(x−ρ) = y(ρ)(x(ρ))− y(ρ)(x

(ρ)
−ρ)

since x and x−ρ differ only in their lower dimensional components corresponding to group ρ. Similar to

row vector b(ρ), we construct a matrix B(ρ) of size s× s(g + 1) whose rows and columns are associated

with the solutions in S and in D, respectively, where each row has exactly one 1 and one −1 while the rest

are 0. In particular, in each row, the elements with 1 and −1 are for x and x−ρ of the corresponding solution

pair. Notice that B(ρ)1⃗|D| = 0⃗s. Further, for ϱ ̸= ρ, notice that B(ρ)T
(ϱ)
DD = 0s×|D(ϱ)| since x(ϱ) =x

(ϱ)
−ρ.

EC.5.3. MLEs for GMRFs

As mention in the previous section, we approximate the objective function values as purely additive. In other

words, Y(r) is excluded from Y in (3) as we focus on the objective function value differences. Then, since

B(ρ)1⃗|D| = 0⃗s and B(ρ)T
(ϱ)
DD = 0s×|D(ϱ)| for ϱ ̸= ρ, notice that B(ρ)Yϵ

D =B(ρ)T
(ρ)
DDY

(ρ)
D +B(ρ)ϵ depends

only on group ρ and the stochastic noise. Moreover, B(ρ)Yϵ
D ∼ N

´

0⃗s,Σ
(ρ)
B (θ(ρ))

¯

, where Σ
(ρ)
B (θ(ρ)) =

B(ρ)T
(ρ)
DDΣ

(ρ)
DD[B

(ρ)T
(ρ)
DD]

⊤+B(ρ)Σϵ[B
(ρ)]⊤; recall that Σ(ρ)

DD is a function of Q(ρ), which depends on θ(ρ).

Then, the log-likelihood function of θ(ρ) given B(ρ)Yϵ
D =B(ρ)ȲD is

L(θ(ρ) |B(ρ)Yϵ
D =B(ρ)ȲD)∝

1

2
log|[Σ(ρ)

B (θ(ρ))]−1| − 1

2

`

B(ρ)ȲD
˘⊤

[Σ
(ρ)
B (θ(ρ))]−1B(ρ)ȲD.

Thus, the MLE pθ(ρ) of θ(ρ) can be obtained by solving

pθ(ρ) = argmax
θ(ρ)∈Θ(ρ)

L(θ(ρ) |B(ρ)Yϵ
D =B(ρ)ȲD),

where Θ(ρ) = {θ(ρ):θ
(ρ)
0 > 0, θ

(ρ)
l ≥ 0 for 1≤ l≤ d(ρ), and

∑d(ρ)

l=1 θ
(ρ)
l < 0.5} is a set of values of θ(ρ) that

makes Q(ρ) positive-definite. Of course, this approach causes loss of information, but makes it easier to

estimate the parameters for each group individually.

Similarly, notice that B(g)Yϵ
D =B(g)Y(g)

D +B(g)ϵ depends only on the last group g and the stochastic

noise. Moreover, B(g)Yϵ
D ∼N

´

0⃗s,Σ
(g)
B (σ2

g)
¯

, where Σ
(g)
B (σ2

g) = σ2
gB

(g)[B(g)]⊤ +B(g)Σϵ[B(g)]⊤. Then,

the log-likelihood function of σ2
g given B(g)Yϵ

D =B(g)ȲD is

L(σ2
g |B(g)Yϵ

D =B(g)ȲD)∝
1

2
log|[Σ(g)

B (σ2
g)]

−1| − 1

2

`

B(g)ȲD
˘⊤

[Σ
(g)
B (σ2

g)]
−1B(g)ȲD.

Thus, the MLE σ̂2
g of σ2

g can be obtained by solving

σ̂2
g = argmax

σ2
g>0

L(σ2
g |B(g)Yϵ

D =B(g)ȲD).
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EC.5.4. An Alternative Method for Estimation of Random-Effect Vectors

Notice that Var rY(x)s =
∑

ρ∈G(−g) Var
“

Y(ρ)(x(ρ))
‰

+Var
“

W(g)(x)
‰

for each x∈X since Y(ρ)’s and W(g)

are independent. To estimate variance σ2
g = Var

“

W(g)(x)
‰

, it suffices to estimate the total variance, i.e.,

Var rY(x)s, and the first-order effects, i.e., Var
“

Y(ρ)(x(ρ))
‰

for each ρ. The former can be done with any

subset of solutions such as S, e.g., an estimate of Var rY(x)s is

yVar pY(·)q = 1

s

∑
x∈S

`

ȲD(x)
˘2 −

˜

1

s

∑
x∈S

ȲD(x)

¸2

.

On the other hand, the latter requires a special construction of initial design points for better estimates

(Saltelli 2002). For such construction, for x∈ S, consider g solutions (x1,x2, . . . ,xg) such that x(ϱ) =x(ϱ)
ρ

if ϱ = ρ, and x(ϱ) ̸= x(ϱ)
ρ otherwise, for ρ, ϱ ∈ G. In other words, x and xρ differ in their lower dimen-

sional components except the ones corresponding to group ρ. Then, using s = |S| such solution pairs,

Var
“

Y(ρ)(x(ρ))
‰

can be estimated as

yVar
`

Y(ρ)(·)
˘

=
1

s− 1

∑
x∈S

ȲD(x)ȲD(xρ)−

˜

1

s

∑
x∈S

ȲD(x)

¸2

.

Notice that the feasible solutions used for this estimation are different than the ones used for the estimation

of θ(ρ)’s. Therefore, considering both estimations, |D| = s(2g + 1) initially. Since this method requires

additional initial design points, we use MLE to estimate variance σ2
g in our numerical experiments, as

explained in the previous section.

EC.5.5. MLEs for Location Parameters

For fixed θ(ρ)’s, the MLE for β0 is

pβ0 =
´

1⃗|D| rΣDD +Σϵs
−1

1⃗⊤
|D|

¯−1

1⃗|D| rΣDD +Σϵs
−1

ȲD.

Notice that pβ0 is a function of θ(ρ)’s, but we suppress the dependency. Also, notice that ΣDD is a function

of σ2
g , leading to different estimates depending on which group is considered as the last group (group g).

Therefore, while initially estimating β0, we compute ΣDD by excluding group g from the additive model,

i.e., ΣDD =
∑

ρ∈G T
(ρ)
DDΣ

(ρ)
DD[T

(ρ)
DD]

⊤. However, if β0 is re-estimated after obtaining additional simulation

output, ΣDD can be computed by taking into account the current last group. Similarly, for fixed θ(ρ)’s, we

use MLE to estimate βz with the simulation outputs of the solutions in Dz.


