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Renewable energy generators often rely on their battery deployments to meet their commitments in electricity
markets. We consider the joint energy commitment and storage problem for a wind farm paired with a
battery. The power producer decides, in each hour of a finite planning horizon, how much energy to commit
to dispatching or purchasing for the next hour, how much wind energy to generate, and how much energy
to charge or discharge. The power producer pays a penalty cost if they do not fully meet their commitment.
Using a Markov decision process model under uncertainties in electricity price (assumed to be positive) and
wind speed, we first prove the optimality of a state-dependent threshold policy for the power producer’s
problem. This policy partitions the state space into several disjoint domains, each associated with a different
action type, making it optimal to bring storage and commitment levels to different threshold pairs in each
domain. We then employ our structural results to develop a heuristic solution procedure in a more general
setting where the electricity price can also be negative. Numerical results show the high efficiency and
scalability of this procedure. It provides solutions with an average deviation of only 0.3% from optimality
and achieves a speedup of two to three orders of magnitude compared to the standard dynamic programming

algorithm, reducing computation times from several hours to just a few minutes.
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1. Introduction

1.1. Motivation and Overview of the Problem

Technological advancements, government support, and cost reductions have led to rapid growth in
the use of renewable energy sources, such as wind and solar (Beyene and Tsao 2024). Renewable
energy sources are projected to account for over one-third of global electricity generation soon,
surpassing coal for the first time (EIA 2024a). While these sources contribute more to the overall
energy supply, renewable power producers participate in electricity markets and make advance
commitment decisions for energy delivery and purchase. Making these commitment decisions effec-

tively is challenging due to the inherent intermittency of renewable energy sources, increasingly
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volatile electricity prices, and penalty costs arising from energy imbalances — situations where the
actual energy generated differs from the committed amount.

One of the most promising solutions to address these challenges is the integration of renewable
energy generation with energy storage, particularly through batteries (EIA 2024b). Battery storage
helps stabilize renewable energy supply by storing excess energy during periods of overproduction
and discharging it during shortages. Batteries also enable energy arbitrage, allowing producers to
store electricity when prices are low and sell it when prices are high, further enhancing profitabil-
ity. 1 Coupled with technological advancements and supportive policies, these factors have driven
substantial growth in battery storage in recent years. For example, in the U.S., battery storage
additions surged by 64% in 2024, making it the second-largest source of new capacity after renew-
ables (Deloitte 2024). Policymakers are also refining regulatory frameworks to accelerate battery
deployment (e.g., the U.S. Federal Energy Regulatory Commission’s updated wholesale market
rules, EPRI 2024, and the Department of Energy’s grid energy storage strategy, DOE 2024). As
these policy-driven efforts gain momentum, renewable power producers are at the forefront of a
rapidly evolving market landscape, where advance commitment decisions for energy supply and
purchase are becoming increasingly critical. In this context, the joint optimization of renewable
energy generation and storage is essential for achieving both operational and financial objectives.

We study the energy commitment, generation, and storage problem of a wind power producer
who owns a battery and participates as a price-taker (i.e., a producer who does not have the power
to affect market prices) in a spot market entailing hourly commitments and settlements. In each
time period, the producer decides how much energy to commit for sale or purchase in the next
time period, how much wind energy to generate, and how much energy to charge or discharge.
The battery installed helps mitigate energy imbalances caused by fluctuations in wind speed, while
also enabling price arbitrage over time in the same market. The producer is subject to market
regulatory constraints and settlement penalties for imbalances, defined as deviations between the
real-time delivered energy (which includes both wind generation and battery operations) and the
previously committed amount. A positive imbalance occurs when the delivered amount exceeds the
commitment, while a negative imbalance reflects a shortfall. The transmission line and battery stor-
age capacities limit the producer’s ability to utilize all available wind energy. As a result, physical

curtailment may arise endogenously when wind potential exceeds the combined system capacity,

! Although the high capital cost of procuring battery storage and its degradation over time are critical considerations
for investment planning, these factors are exogenous to our study. We focus on short-term operational scheduling,
assuming a battery of fixed size is already installed. In this context, battery storage is viewed primarily as an
operational tool for managing price volatility and market exposure.
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which changes dynamically with the battery storage level. We model this problem as a Markov

decision process (MDP) by accounting for the electricity-price and wind-speed uncertainties.

1.2. Related Work

Our study contributes to two research streams in the energy literature: The first stream focuses on
the energy commitment problem of renewable power generators in electricity markets (e.g., Kim
and Powell 2011, Lohndorf et al. 2013, Jiang and Powell 2015, Gonsch and Hassler 2016, He et al.
2016, Hassler 2017, Khaloie et al. 2020, Kim et al. 2020, Zhang et al. 2020, Finnah and Goénsch
2021, Mansouri and Sioshansi 2022, Jeong et al. 2023, Karakoyun et al. 2023, and Chen et al. 2024).
The second stream studies the joint optimization of renewable power generation and energy storage
(e.g., Harsha and Dahleh 2014, Grillo et al. 2015, Tang et al. 2015, Zhou et al. 2019, Avci et al.
2021, Ma et al. 2022, Tsao and Vu 2023, Peng et al. 2024, and Tsao et al. 2025). Given the extensive
body of work in these areas, we refer the reader to Parker et al. (2019) for a comprehensive survey
of the related literature. We will review the most relevant papers that employ MDP formulations.

The problem setting we consider is similar to that explored in Karakoyun et al. (2023), which
falls within the first research stream. While their work provides valuable insights into the complex
interplay between battery deployments, energy imbalances, and penalty parameters, it presents
neither optimal policy structure nor efficient solution algorithms. Our work complements theirs by
offering a theoretical explanation of the complex system dynamics involved in optimizing energy
commitments for intermittent generation assets. Specifically, we analytically derive the optimal
policy structure for the joint optimization of energy commitment, generation, and storage decisions
within a multidimensional state space. Furthermore, we employ this policy structure to develop
computationally efficient solution algorithms. Karakoyun et al. (2023) solve their problem instances
with a standard dynamic programming (DP) algorithm, which is difficult to implement in practice
due to its long solution times (several hours). However, our solution methods accounting for the
structural results in this paper yield solutions in only a few minutes.

Another closely related paper in the first research stream is Kim and Powell (2011), which
derives a closed-form solution for the optimal hour-ahead commitment decision of a wind power
producer, assuming that wind speed follows a uniform distribution. Their model focuses solely on
commitment decisions, where the power producer determines how much energy to sell in advance.
Our study extends this work in several key ways. First, we consider a more general model that
incorporates energy generation and storage decisions. Second, our model takes into account power

capacity constraints and transmission line limitations. Third, while the producer in their model
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can only commit to selling and cannot induce positive imbalances, our model allows the producer
to buy energy and induce both positive and negative imbalances. Finally, our analysis does not
rely on any specific probability distribution for wind speed.

The most closely related papers in the second research stream are Zhou et al. (2019) and Avci
et al. (2021). Zhou et al. (2019) consider a wind farm co-located with an industrial battery, includ-
ing the battery storage level as the only endogenous state variable in their MDP. Avci et al. (2021)
consider a wind farm co-located with a pumped hydro energy storage facility consisting of two
connected reservoirs, including the water levels in the upper and lower reservoirs as the two endoge-
nous state variables in their MDP. Our study extends these two papers in several ways. First, both
Zhou et al. (2019) and Avci et al. (2021) focus on electricity markets that are free of advance
commitment decisions, whereas our model explicitly incorporates these decisions. This increases
the complexity of the problem, as we must treat the commitment decision from the previous period
as an additional endogenous state variable. Second, in terms of optimal policy characterization, the
above two papers show concavity of the optimal value function in a single dimension (i.e., storage
level), while we prove joint concavity in two dimensions (i.e., storage and commitment levels).
Therefore, their optimal policy structures involve only one target level (for the battery storage
level in Zhou et al. 2019 and for the upper-reservoir water level in Avci et al. 2021), whereas ours

involves two target levels for storage and commitment decisions that must be jointly optimized.

1.3. Contributions of Our Study

We contribute to the energy literature in two different ways: (i) We characterize the optimal
policy structure for the hourly energy commitment, generation, and storage problem. Our struc-
tural insights not only deepen market regulators’ understanding of participant behaviors under
uncertainty but also aid wind power producers in developing smarter and more practical heuris-
tic solution methods. (ii) Building on our structural results, we design computationally efficient
heuristic algorithms capable of delivering high-quality solutions.

In our structural analysis, assuming positive electricity prices, we first formulate the optimal
amount of wind energy that should be generated in any given period as a function of the state
variables in that period. We then prove the joint concavity of the optimal value function in storage
and commitment levels. This result allows us to show that the optimal storage and commitment
policy follows a state-dependent threshold policy. The optimal decisions in each period can be
guided by thresholds that vary based on the state variables, which can be reduced to exogenous

state variables through proper state-space partitioning. Specifically, the state space in each period
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can be partitioned into disjoint domains that correspond to the optimal decisions of ‘positive
imbalance’ and ‘negative imbalance’ as well as to the optimal decisions of ‘charge and purchase,’
‘charge and sell,” and ‘discharge and sell.” It is then optimal to bring the storage and commitment
levels to a different exogenous-state-dependent threshold pair in each domain.

We construct a heuristic solution procedure that employs our structural results to reduce the
computational burden of the standard DP algorithm, while also accounting for the possibility of
negative electricity prices over long planning horizons. In this procedure, we develop a backward
induction algorithm that calculates the state-dependent threshold pairs for the storage and com-
mitment levels in each period. While the storage and commitment actions in positive-price states
are determined by these threshold pairs, those actions in negative-price states are obtained from
the myopically optimal solution. We call this solution method HC (Heuristic via Complete state
space). We also consider a variant of HC that uses the output of HC executed in a simpler setting
in which we ignore the spike component of the price to reduce the state space. We call this variant
HR (Heuristic via Reduced state space).

In order to evaluate the use of our solution methods in the general problem, we have com-
piled realistic instances by incorporating the electricity-price and wind-speed time-series models of
Karakoyun et al. (2023) into the random evolution of the exogenous state variables in our MDP.
HC yields the optimal solution in all instances by up to 69 times faster than the standard DP
algorithm. HR yields near-optimal solutions 8 times faster than HC. The solution time of HR is less
than one minute in each instance, while the standard DP algorithm has an average solution time

of 237.6 minutes. All these findings highlight the practical importance of our structural analysis.

1.4. Organization of the Paper

The remainder of this paper proceeds as follows. Section 2 formulates the problem. Section 3 estab-
lishes the optimal policy structure. Section 4 illustrates the optimal policy structure under perfect
efficiency. Section 5 offers the heuristic solution methods based on our structural results. Section
6 presents the numerical results for our heuristic methods and alternative solution approaches.

Section 7 concludes. Proofs of the analytical results are contained in an online appendix.

2. Problem Formulation

We consider an energy system that was studied in several recent papers (e.g., Zhou et al. 2019,
Bhattacharjee et al. 2020, and Karakoyun et al. 2023). In this system, the energy generated in the

wind power plant and/or purchased from the market can be utilized to charge the battery. The
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Table 1 Notations used in the MDP model.

Parameters Descriptions

Cs Battery’s energy capacity (MWh).

Cb Maximum energy that can be discharged from the battery during a time period (MWh).
Cco Maximum energy that can be charged into the battery during a time period (MWh).
Cr Maximum energy that can be transmitted during a time period (MWh).

¥ Electricity conversion efficiency in the generation mode of the battery (v € (0,1]).

0 Electricity conversion efficiency in the storage mode of the battery (6 € (0,1]).

T Electricity transmission efficiency (7 € (0, 1]).

K, Positive imbalance price parameter in positive-price states (0 < K, < 1).

K, Negative imbalance price parameter in positive-price states (1 < Ky).

K, Positive imbalance price parameter in negative-price states (1 < K, ).

K, Negative imbalance price parameter in negative-price states (0 < K, < 1).

State variables

St Accumulated amount of energy in the battery at the beginning of period t, i.e., the
storage level (S € [0,C5s]).
Q: Amount of energy that the producer should sell in period ¢ if Q: > 0 and should buy in

period t if Q¢ <0, as per the producer’s commitment in period ¢t — 1, i.e., the commitment
level (Q: € R).

P, Electricity price in period ¢ (P; € R).

W Wind speed in period t (W; € R4).

I Exogenous state of the system (I := (Px, Wi)r<: with Ep_j7,[|Px|] < 0o for & > t).
fF(Wy) Maximum amount of energy that can be generated in the wind power plant in period t.

Decision variables

qt Amount of energy to commit to selling or purchasing in period ¢+ 1 (¢: € R).
wt Amount of energy to generate in the wind farm in period t (w: € Ry).
St Amount of energy to generate or store in the battery in period ¢ (s¢ € R).

power producer participates as a price-taker in a spot market that mandates hour-ahead commit-
ments and hourly settlements.? The future electricity prices and wind availability are uncertain.
The producer decides, in each hour, how much energy to generate in the wind power plant, how
much energy to charge into or discharge from the battery, and how much energy to commit to
selling to or buying from the market in the next hour. Since a similar setting was also studied
in Karakoyun et al. (2023), our presentation and notation below closely follow the corresponding
material in Karakoyun et al. (2023). The notations used in our model are listed in Table 1.

The power producer seeks to optimize its energy commitment, generation, and storage decisions
over T periods (hours). T :={1,2,...,T} is the set of periods. We consider an MDP in which the
storage and commitment levels are endogenous state variables while the electricity price and wind
speed are exogenous state variables. In any period ¢ € T, upon observing the state variables (P;,
Q, Si, and W,), the producer determines the amount of energy to commit to selling or purchasing
in period t+ 1, ¢; € R; the amount of energy to generate in the wind farm in period ¢, w; € Ry;

and the amount of energy to generate or store in the battery in period t, s; € R. The battery is

2 The price-taking assumption is benign if the system makes a very limited contribution to the overall energy supply
in the market. This assumption was made in many related papers (e.g., Kim and Powell 2011, Ding et al. 2015,
Gonsch and Hassler 2016, Hassler 2017, Diaz et al. 2019, and Karakoyun et al. 2023).
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Figure 1 Sequence of events in each period.

Electricity price P,

Commitment from the previous period @,
Storage level .S,

Wind speed W;

State variables

R(Qtyltashwt)

\ St t+1 ! period
1
1

Commitment for the next period ¢,
Decision variables { Storage amount s,
Wind generation w,

charged if s; < 0 and discharged if s; > 0. See Figure 1 for an illustration of the sequence of events.
The state variables S; and @Q; evolve over time as follows: Sy, 1 =.5; — s; and Q; = q;_1.

The energy storage and generation decisions fall into one of the following three types: (i) Suppose
that the battery is discharged (s; > 0). The energy generated from the battery and wind farm is
sold in this case. We call this decision type DS (the initials of ‘discharge’ and ‘sell’). (ii) Suppose
that the battery is charged (s, < 0) and the generated wind energy is sufficient to charge the
battery (s;/0 > —w;). The excess wind energy is sold in this case. We call this decision type CS (the
initials of ‘charge’ and ‘sell’). (iii) Suppose that the battery is charged (s, <0) and the generated
wind energy is not sufficient to charge the battery (s;/0 < —w;). The required additional energy is
purchased in this case. We call this decision type CP (the initials of ‘charge’ and ‘purchase’). The
actual amount of energy sold or purchased in period ¢ is

(vss +wy)T if s, >0,
E(s¢,wy) =1 (8:/0 +w)T if —w; <s,/0<0,
(s¢/0+wy) /T if 8,/0 < —w, <0.

The energy is sold if E(s;,w;) > 0 and purchased otherwise. Note E(s;,w;) = min{(vys; +
w)T, (8¢/0+w)T, (8¢/0+w;)/7T}. Since the minimum of affine functions is concave, E(-,-) is concave.
Let U(Q:, S, I;) denote the set of action triplets (g;, s;,w;) that are admissible in state (Q;, S, I;).
Any action triplet in U(Q,S:, I;) satisfies the following conditions: 0 < w, < f(W;) (due to the
wind-farm power capacity), —min{Cys — S;,Cc} < s, <min{S;,Cp} (due to the battery’s energy
and power capacities), and —Cr < E(s;,w;) < 7Cr (due to the transmission power capacity).

Deviations from contractual commitments can occur due to participants’ forecast errors and/or
profit-maximization behavior. Although such deviations are closely monitored by the market reg-

ulators, some occurrences still take place (Bergler et al. 2017 and Eicke et al. 2021). The market
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operators impose penalty payments to discourage deviations from scheduled commitments. We
consider a general model that is flexible enough to reflect such market realities and participant
behavior by incorporating the penalty costs. These penalties vary depending on the magnitude and
direction of the imbalance as well as market regulations and conditions.

The energy storage and generation decisions can be grouped into two types based on the sign
of deviations: (i) Suppose that the amount of energy supplied to (or withdrawn from) the market
in real-time is greater (or lower) than the commitment level (i.e., E(s;,w;) > @;). This leads to a
‘positive imbalance.” We call this decision type pi. (ii) Suppose that the amount of energy supplied
to (or withdrawn from) the market in real-time is lower (or greater) than the commitment level (i.e.,
E(si,w;) < Q). This leads to a ‘negative imbalance.” We call this decision type ni. The producer
is settled with a penalized price in both cases. Similar settings were studied in many papers (e.g.,
Kim and Powell 2011, Jiang and Powell 2015, Hassler 2017, Sunar and Birge 2019, and Finnah
and Gonsch 2021). The payoff in period ¢ can be expressed as a function of state variables @, and
I, as well as actions s, and wy:

QiP, + K,P,(E(st,w;) — Q) if P,>0 and Q; < E(si,w,) (pi),
Q:P,— K, P,(Q; — E(st,w;)) if P,>0 and Q; > E(s,w;) (ni)
QP+ K, P(E(s;,w) — Q) if P, <0 and Q; < E(s,wy) (pi),
Q:P,— K, P,(Q; — E(s,w;)) if P,<0 and Q; > E(s;,w;) (ni),

where K, P, and K, P; (or K, P, and K, P,) are the imbalance prices in positive-price (or negative-

Y

R(Qtu-[tvstth) =

price) states in the cases of pi and ni, respectively. The imbalance parameters are chosen so that
0<K,<1<K,and 0<K, <1< K;. While the first term of the payoff function is the instant
revenue @; P;, the second term has the following implications: The producer in the case of pi receives
K, Pi(E(s;,w) — Q) if the price is positive or pays —K, P(E(s;,w;) — Q) otherwise, by selling
the excess amount at an imbalance price lower than P,. Likewise, the producer in the case of ni
pays K, P,(Q; — E(s¢,w;)) if the price is positive or receives — K P,(Q; — E(s;,w;)) otherwise, by
purchasing the excess amount at an imbalance price higher than P,.3
A control policy 7 specifies the sequence of decision rules (0] (QF,SF,I;))icr, where QF and
ST are the random state variables implied by policy w, Vt € T\{1}, and n7(QT,SF,I;) :=
(7 (QF, ST, L), sT(QF, ST, 1), wr (QF, ST, I)). We define II as the set of all admissible control poli-
cies. The optimal expected total cash flow over the finite horizon, conditional on the initial state
(Q1,51,11), can be written as
max E ZR(QfJuSf(Qf7SZTaIt)awf(vasfaIt))’QhSl,h] .
teT

3 Similar pricing mechanisms appear in practice. In Spain, for instance, the imbalance prices in the cases of pi and ni
are (1— K)P, and (14 K)P,, respectively, where 0 < K <1 (e.g., Diaz et al. 2019 and Shinde et al. 2020).
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For each period t € T and each state (Q;, S, I;), the optimal value function v;(Qy, S, I;) can be
calculated with the following DP recursion:

U:(Qtastvlt) — max {R(QtaItvstth)+Elt+1|1t U;+1(qt75t75talt+l)i|}

(gt,st,wt)€U(Qy,St,It)

where vr(Q7, ST, Ir) = 0. Note that v](Q1,51,11) is the optimal expected total cash flow for the

initial state (Q1,S1, ;) over the finite horizon.

3. Structural Analysis

In this section, we establish several structural properties of our optimal value function and use
these properties to characterize the optimal policy structure. We first introduce several bounds on

the optimal energy commitment decision.

LEMMA 1. Without loss of optimality, the commitment levels can be constrained as
follows: —min{(Cs—(S;—5:))/(07),E} < ¢ < min{r(v(S;—s))+f),E}, V¢t > 1, and
—min{(Cs—S;)/(07),E} < Q; < min{T('ySt—i—f),E}, YVt > 1, where E := min{C¢/(07),Cr},
E_’::Tmin{vCD%—f, CT}, and f:=max,cr {f(W,)}.

Lemma 1 states that the optimal amount of energy to be committed to selling/buying never exceeds
the maximum amount of energy that can be sold/purchased in the next period.

We now assume that the electricity price is always nonnegative:
AssuMPTION 1. P,>0,VieT.

Assumption 1 implies that R(Qy,I;,s;,wy) = min{Q. P, + K,P,(E(s;,w;) — Qu), QP +
K, P,(E(s;,w;) —Qy)}. Since the minimum of affine functions is concave, R(Q, I;, s;,w;) is jointly
concave in @Q; and FE(s;,w;). Since E(s;,w;) is jointly concave and increasing in s; and wy,
R(Qy, I, s, w;) is jointly concave and increasing in s, and w; as well. Under Assumption 1, we

establish the following structural property of our optimal value function.
LEMMA 2. Under Assumption 1, v;(Qy, Sy, I;) < v (Qy,S; + a, 1) where a >0, Vt€T.

Lemma 2 states that the system becomes more profitable as the amount of energy accumulated in
the battery grows. This is because if the stored energy is higher, the producer can sell more energy
from the battery by charging it less in the long run. Using Lemma 2, we formulate the optimal

amount of wind energy that should be generated in any period.

LEMMA 3. Under Assumption 1, w;(Q¢,St, I;) = min{ f(W;), Cr +min{Cs —S;,Cc}/0}. Moreover,
Zf w:(@h St7 -[t) = CT + min{CS - Sta CC}/G, then S:(Qh St7 -[t) = — min{CS - St7 CC}
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Lemma 3 states that it is optimal to generate as much wind energy as possible. If the wind energy
potential is large enough, it is optimal to sell and store as much energy as possible. The curtailed
amount of wind energy is given by f(W;) — (Cr +min{Cs — S;,Cc}/0) if w;(Q:,St, I;) < f(W2).
This lemma allows us to restrict our optimal policy characterization to the energy commitment
and storage decisions.

Using Lemma 1 and Assumption 1, we also prove the concavity of our optimal value function.
PROPOSITION 1. Under Assumption 1, vf(Qy, S, I;) is jointly concave in (Qy,S;), Vt€T.

The joint concavity of the value function implies that increasing the commitment level exhibits
diminishing returns. A small commitment level raises the risk of missing the opportunity to sell
more energy at the market price, while a large commitment level increases the risk of incurring
penalty costs due to the difficulty of meeting the commitment. Moreover, a high commitment level
may prompt the producer to consume more of the available energy in the current period, potentially
limiting energy availability in the future. Similarly, the joint concavity implies that increasing
the storage level also exhibits diminishing returns. As the battery approaches its capacity, each
additional unit of stored energy provides a smaller benefit in terms of future operational flexibility.
An important implication of Proposition 1 is that the optimal energy commitment and storage
policy can be characterized as following a threshold policy. Specifically, we introduce the optimal
state-dependent target levels for commitment and storage decisions, which we respectively denote
by Y*(Qy, S, I;) and Z;(Qy, S, I;), in an unconstrained problem free of certain capacity limits. We
implement these target levels into the optimal policy structure in the original constrained problem:
(7 Q080 1) Z(Qu S 1) o= argmax —— {R(Qu, L S = 20,w0) + B [y (40,20, Te)| }
(qt,2t)€[-E,E]x[0,Cg]

(1)
where z; 1= S; — s; is the storage level at the end of period t if the action s; is taken in period t. Since
Z*(Qy, Sy, I;) may be inaccessible when the omitted capacity limits are reconsidered, the optimal
storage level at the end of period ¢ may differ from Z;(Q;, S, I;), implying that Y;*(Qy, S, I;) may
no longer be optimal at this storage level. Hence, we also introduce the optimal state-dependent
target commitment level after the storage decision is made in the constrained problem:

Yi(Sig1,1y) = arginax {E [UZFH(%’ St+17—7t+1)} } . (2)
at€[—E,E]
Note that Y,(Z;(Q:, Si, Ii), L) = Y (Qy, Sty Lt).
Using Lemma 3 and Proposition 1, we now characterize the optimal energy storage and com-

mitment actions.
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THEOREM 1. Under Assumption 1, letting w = w;(Qy, Sy, I;) and Z = Z;(Qy, S, 1), the optimal

energy storage action is

—min{Z — S;,0(rCr+w),Cc} if Cr<w and S;+0(w —Cr) < Z,
—0(w—Cr) if Cr<w and Z < S;+0(w—Cr),
—min{Z — S;,0(1Cr +w),Cc} if Cr>w and S; < Z,
min{S; — Z,(Cr —w)/v,Cp} if Cr >w and Z < S,.

5,(Q, S, 1) =

The optimal energy commitment action is q; (Qy, St, I;) = Y, (S; — s7(Q4, S, Iy), 1)

The maximization problem in (1) should be solved for each state to calculate the optimal control
policy. This calculation method, however, provides no computational benefit compared to the stan-
dard DP algorithm. In order to overcome this drawback, we consider an alternative formulation
that restricts the optimal target levels to depend only on exogenous state variable I; and decision
type v. We denote these target levels for the commitment and storage actions by Yt(l') (I;) and
Zt(”) (1), respectively. We consider a total of six decision types: the actions of ‘charge’ and ‘pur-
chase’ leading to positive imbalance (piCP) and negative imbalance (niCP), the actions of ‘charge’
and ‘sell’ leading to positive imbalance (piCS) and negative imbalance (niCS), and the actions
of ‘discharge’ and ‘sell’ leading to positive imbalance (piDS) and negative imbalance (niDS). For
v € {niCP,niCS, niDS, piCP, piCS, piDS},

(). 201)) = argmax RO (e L) +E o7 (g0 210 )| |
(qt,2t)€[-E,E]x[0,Cg]

where

—K, Pz /(0r) if v=niCP,
—K, Pz /0 if v =niCS,
—K, P72z if v =niDS,
—K,P,z/(01) if v=piCP,
—K,P,t2/60 if v =piCS,
—K,P,yTz if v = piDS.

R(V) (Zt7 It) —

Leveraging our structural results, we can easily calculate the optimal target storage level
Z:(Qy, S;, 1) in terms of Z")(I,) (see Theorem 2). In the remainder of the paper, we occasionally
suppress the dependencies of Yt(”)(It) and Zt(y)(It) on I; for notational simplicity. This alternative
calculation method enables significant computational savings (see Section 6).

We denote by Q the domain of (Q,,S;, W,), i.e., Q:=[-FE,E] x [0,Cs] x [0,00). For storage
policy characterization, we consider two different partitioning schemes for this domain. The first
partitioning scheme is based on the relationship between f(W,) and Cr, leading to three disjoint sets
Ay, Ay, and As. Set Ay :={(Qy, S;, Wy) € Q: f(W,) > Cr+min{Cs — S;,Cc}/0} represents the case

where the wind power potential in period t exceeds the maximum total amount of energy that can



12 Optimal Hour-Ahead Commitment and Storage Decisions of Wind Power Producers

be used for selling and storing in period ¢. Set Ay := {(Q, S;, W;) € Q: Cr +min{Cs — S;,Cc}/0 >
f(W,) > Cr} represents the case where the wind power potential in period ¢ is greater than the
transmission capacity but less than the maximum total amount of energy that can be used for
selling and storing in period t. Set As:={(Qy,S;, W) € Q: Cr > f(W,)} represents the case where
the wind power potential in period ¢ is less than the transmission capacity.

The second partitioning scheme is based on the relationship between f(W;) and Q;, leading
to disjoint sets ¥}, Uy, Wi, W, Ul and ¥;. The superscript gives the sign of commitment
level. Sets ¥ := {(Q;,S;,W;) € Q: f(W,) > Q;/7 + min{Cs — S;,Cc}/0, Q; >0} and ¥y :=
{(Q, Si, W) e X: f(W,) > 7Q +min{Cs — S;,Cc}/0, Q; <0} represent the cases where the wind
power potential in period ¢ is greater than the maximum total amount of energy that can be used
for meeting the commitment and storing in period ¢. Sets U3 :={(Qy, S, W) € Q: Q,/7+min{Cs —
Si,Cc}/0 > f(Wy) > Qi/7, Qy >0} and V5 = {(Qy,S;, W) € Q: 7Q; + min{Cs — S;,Cc}/0 >
fWy) >71Q¢, Qp <0} represent the cases where the wind power potential in period ¢ is greater
than the amount of energy required to meet the commitment in period ¢ but less than the maxi-
mum total amount of energy that can be used for meeting the commitment and storing in period
t. Lastly, sets U3 :={(Q,S;,W,) €Q:Q,/7 > f(W,), Q, >0} and V3 :={(Q;,S,,W,) €Q:7Q, >
f(W,), Qi <0} represent the cases where the wind power potential in period ¢ is less than the
amount of energy required to meet the commitment in period ¢. Note W3 = ().

Using the above sets, we construct ten subdomains of Q: Ay, A;NUT, AaNWT, A,NUT, A,NTs,
AsNUT, AsnNUT, AN, AsN Py, and A;N WL, Note A, N UF = () since the condition Q;/7 >
f(W,) > Cr is not possible from Lemma 1. Incorporating these subdomains and suppressing the
dependency of Z}(Qy, S, I;) on (Q4, S, I;) for notational simplicity, we state the main result of this

section:

THEOREM 2. The optimal state-dependent target storage levels can be calculated as follows.
(7/) [f (Qt7StaWt)eAl7 Zt*(QtaShIt):CS'
(27’) If (Qta Stv Wt) € A2 N \Ilii_’ Z:(Qta St; It) = max {Zt(piCS)a St} .

(1i7) If (Q:, Si, W) € Ao NTT,

max

max { Z", 8, +0f (W)} if Sp < ZP —0f (W),
Z:(Qtvstalt):{ % ' } ‘ '

7). st} if Z8) — 9 (W) < S,

(iv) If (Qs, Sy, Wy) € Ao N,



Optimal Hour-Ahead Commitment and Storage Decisions of Wind Power Producers

13

max {zﬁ"m, S, +0 f(Wt)}

if S, <z —gf (W),
max { 2" S, + 6(F(W.) - Qu/7)}

if Z0" —0f(W,) < 8, < 2 —0(f(W,) — Qu/7),
max {zgf’“’, st}

if ZPD —0(f(W,) — Qi/7) < S

Z:(Qtvst,-[t) -

(v) If (Q:, Se, W) € Ao NI,

max{ 2P 8, 4 a(f
if S, < ZPP) _o(f

W) -rQ)
W) —7Q.),
max {Z§Picp>, S, +6 f(Wt)}
if 27— 0(f (W) = 7Qu) < S, < 2P — 0 (W),
max {Zt(”i“), St}

if Z8PS) —0f(W,) < 8,

o~

Z:(QtaShIt):

(’U’L) If (QtaShWt) EA3Q\IIT’

* max{Z", 5.} if 5, < 20
ZH(Qu, Siy 1) = (piDS) ¢ r7(piDS)
Zt Zf Zt < St.

(vii) If (Q:, Ss, W) € AsNPT,

max ZEP‘CP>,St+9f<Wt>} if S, < Z" —0f (W),

Zt* (Qt; St7 It) = max Zt(pics)7 St} Zf Zt(PiCS) _ ef(Wt) S St S Zt(piDS),

Z(iPS) if 2P < g,
(viii) If (Qq, S, W,) € As N T,

max{ 7P g, 19 f(Wt)}
if S, < 2" —0f (W),
maX{Zt("iCS),St FOF(W,) — t/T)}
if Z"D —0f(W,) < 8, < ZPD —0(F(W,) — Qu/7),

Z:(thtw[t) = .
max {Zt(')'cs), St}
if Z = 0(f(Wh) = Quf7) < Se < Z™™,
Z(PiDS)
t

if ZP < S,

(iz) If (Q:, Sy, W) € AsNT5,
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max {zg“‘“’), S, +0(f(W;) — TQt)}

if S < Z7D —0(f(W,) = 7Qy),
max {zfpi“’), S, +6 f(Wt)}

if 257 —0(F(W,) = 7Q) < 8, < ZF — 0 (W),
max { 27, 5, }

if ZP —9f(W,) < S, < 2P,
Zt(piDS)

Z:(Qtvstv-[t):

if 2P < g,
(x) If (Qq, Sy, W,) € AsN W],
max {zf“”’), S, +0 f(Wt)}
if S, < 2" —0f(W,),
max {Zt("i“), St}
if 2" —0f(W) <8, < 2",

max{Zt("iDS),St —(Q¢/T— f(Wt))/’Y}

if 2P <8, < 2P 1 Q)T — F(W) /7,
(#DS)
t

Z:(Qtastajt) =

if ZP% +(Qu/m— F(W)) /7 < St

Theorem 2 formulates the optimal target storage level Z}(Q;,S;, ;) in terms of z" (1), condi-
tional on the ten subdomains defined earlier. It implies that when the available energy is too low,
it is optimal to charge the battery and purchase energy from the market. In this case, the producer
chooses to bring the storage level up to Zt("icp)(It) or ZPP) (I;). When the available energy is mod-
estly high, the producer gains the flexibility to charge the battery and sell energy to the market. In
this case, the producer chooses to bring the storage level up to Zt(nics)(lt) or Zt(pics)(It). When the
available energy is high enough, it is optimal to keep the storage level unchanged. However, when
the available energy is too high, it is optimal to discharge the battery and sell energy to the market.
In this case, the producer chooses to bring the storage level down to Z"°® (1,) or Z"**(1,).

For a special case of our problem when the system is perfectly efficient (i.e., when y=0=7=1),
we provide in Section 4 an illustration of the optimal target storage level (restricted to the decision
types ni and pi), conditional on four disjoint subdomains of (Q, S;, W;). We also discuss in Section 4
how the optimal type of imbalance is affected by the available energy. For another special case of
our problem when the producer is free of commitment decisions (i.e., when K, = K,, = 1), we refer
the reader to Zhou et al. (2019) for an illustration of the optimal target storage level (restricted to

the decision types CP, CS, and DS), conditional on three disjoint subdomains of (S, W5).
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PROPOSITION 2. The optimal target storage levels obey the following properties:
(a) Zt(niCP) < Zt(piCP)’ Zt(niCS) < Zt(piCS)’ and Zt(niDS) < Zt(piDS).

(b) Zt(niCP) < Zt(niCS) < Zt(niDS) and ZEpiCP) < Zt(piCS) < Zt(piDS)'

Point (a) of Proposition 2 states that the optimal target storage level is higher when the optimal
storage action leads to a positive imbalance than when it leads to a negative imbalance. This is
because the optimality of positive (negative) imbalance is a consequence of excess (limited) energy
availability. The optimal target storage level may thus increase as the current storage level grows
for a fixed wind power potential. Point (b) of Proposition 2 states that the optimal storage level is
highest if the optimal decision type is DS and lowest if it is CP. This ranking is a consequence of the
battery and transmission line inefficiencies. While Z"® = Z{"®® and ZzP® = Z"P jf y =9 =1,

Zt(niCP) _ ZéniCS) and Zt(piCP) _ priCS) ifr=1.
4. lllustration of the Optimal Storage Policy under Perfect Efficiency

In this section, in order to simplify our policy illustration, we consider a special case of our problem
in which the system is perfectly efficient (i.e., v =60 =7 =1). This special case involves only two
decision types: negative imbalance and positive imbalance. For v € {ni, pi}, the optimal target levels
for the commitment and storage actions can be calculated as follows:
(Yt(”)(lt), Zt(")(It)) .= argmax {R(”)(zt,lt) +E [v;+1(qt, 2, Im)] }
(qt,2t)€[-E,E]x[0,Cg]

where

ROz, I = {KnPtzt ?f v =ni,

—K,P,z if v=pi.
For optimal storage policy characterization, unlike the original problem, we partition the domain
) into four disjoint subdomains: We define the set Yy := {(Qy, S;, W) € Q: f(W;) > Cr+min{Cs —
S;,Cc}} as the subdomain where the wind power potential in period ¢ is greater than the maximum
total amount of energy that can be used for selling and storing in period . We define the set T4 :=
{(Q4,Se, W) € Q : Cr + min{Cs — S;,Cc} > f(W,) > Q; + min{Cs — S;,Cc}} as the subdomain
where the wind power potential in period ¢ is less than the maximum total amount of energy that
can be used for selling and storing in period ¢, but greater than the maximum total amount of
energy that can be used for meeting the commitment and storing in period t. We define the set
T3 :={(Q:,SW;) € Q: Q; + min{Cs — S;,Cc} > f(W;) > Q; — min{S;,Cp}} as the subdomain
where the wind power potential in period ¢ is less than the maximum total amount of energy that

can be used for meeting the commitment and storing in period ¢, but greater than the amount of

energy required to meet the commitment after the battery is discharged as much as possible in
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Figure 2 Mustration of Z; (Q+, S, I;) for a fixed Q:. Regions separated by dashed lines correspond to different

subdomains of Q (T1 to T4 from top to bottom). Different colors indicate different target levels.

Cr+Cc

Q:+Cc

fWh)

Q:

R R SR Q:—Co

St

period ¢. Finally, let Ty :={(Q:, S, W;) € Q: Q; — min{S;,Cp} > f(W,)}. With these subdomains

we identify the optimal storage policy structure:

COROLLARY 1. Under Assumption 1, if y=0=71 =1, the optimal state-dependent target storage
levels can be calculated as follows.
(i) If (Qu, Se, Wi) € Y1, Z7(Qy, i, 1) = Cs.
(it) If (Q1, St W,) € Yo, Z7(Qr, Sy, 1) = ZP)(1).
(i5i) If (Q¢, Sy, Wy) € Y3,

ZM™(1) if Sy < ZM (1) — F(WL) +Q,
ZH Qi Si L) = S+ FW) = Q, if ZM™ (1) — F(Wh) + Q, < Sy < ZP(1) — F(Wh) + Qu,
ZP(1,) if ZPN(L) — f(Wi) +Q; < S,

(iv) If (Qi, S0, W) € T, Z7(Qu, S, 1) = Z(1,).

We provide an illustration of the optimal storage policy in Figure 2. (i) Suppose that the wind
power potential in period ¢ is extremely large (i.e., (Q;, S;, W;) € T1). See the top region in Figure 2.
Then it is optimal to increase the battery storage level as much as possible. (ii) Suppose that the
wind power potential in period t is large enough to only meet the commitment and charge the
battery as much as possible (i.e., (Q;, S, W;) € T3). See the second top region in Figure 2. Then it
is optimal to bring the battery storage level as close to Z\™(I,) as possible. (iii) Suppose that the
wind power potential in period ¢ is not sufficient to meet the commitment and charge the battery
as much as possible (i.e., (Qy,S;, W;) € T3). See the third top region in Figure 2. If the battery
storage level is low (i.e., S, < Z"(I,) — f(W,) + Q,), it is optimal to bring it as close to Z™ (I,)
as possible. If it is modestly high (i.e., Z" (L) — f(W,) 4+ Q: < S, < ZP) (L) — F(W,) + Q,), it is
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optimal to meet the commitment as much as possible. If it is high (i.e., Z" (1) — f(W,) + Q; < S,),
it is optimal to bring it as close to Zt(pi)(lt) as possible. (iv) Suppose that the wind power potential
in period ¢ is extremely small (i.e., (Q;, S, W;) € T4). See the bottom region in Figure 2. Then it
is optimal to bring the battery storage level as close to Zt("i)(lt) as possible.

These observations together indicate that the optimal target storage level Z;(Qy, Sy, I;) is likely
to switch from Z(I,) to Z{")(I,) as the system moves from T, to T4. In other words, the optimal
imbalance type is likely to shift from positive to negative as the wind power potential decreases.
The optimal imbalance type is also likely to shift from positive to negative as the storage level
shrinks in Y. This is because the marginal value of increasing storage is higher at lower levels,
implying that a negative imbalance may be more desirable.

From a practical perspective, the above policy structure offers insights for both operational
decision-making and policy design. Energy producers could benefit from dynamically adjusting
their imbalance preferences in response to current market and wind conditions and battery storage
levels. Once the imbalance type is determined, the target levels Z;(pi) and Z;(ni) play a central role
in specifying the imbalance amount. In parallel, market regulators could implement penalty mech-
anisms that dynamically respond to these changing conditions to discourage imbalance behavior
among market participants. When designed appropriately, such mechanisms induce target levels
Z,(pi) and Z,(ni) that steer imbalances as close as possible to the desired levels.

While the threshold-type policy we derived may resemble the classical base-stock structure from
single-item inventory control, our model differs in several important ways. First, the state space is
more complex. Instead of a single inventory level, it involves two interdependent state variables:
the storage level and the commitment level. This requires establishing joint concavity over a two-
dimensional domain rather than relying on single-variable arguments. Second, the decision variables
are inherently linked. Unlike classical models with largely independent decisions, our model requires
simultaneous choices regarding wind generation, battery operation, and energy commitments, all
under physical constraints such as storage and transmission limits and battery inefficiencies. Third,
the payoff formulation departs from traditional settings. Rather than convex holding and shortage
costs, the payoff reflects an asymmetric imbalance pricing mechanism, formulated as the minimum
of multiple affine functions depending on the direction and magnitude of the energy imbalance.
Finally, the complex interactions between energy-specific features such as conversion and trans-
mission losses, storage and transmission limits, and wind availability segment the decision space
into distinct operational regimes, each associated with a different configuration of actions. This

complex policy structure has no direct counterpart in classical inventory control frameworks.
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5. Heuristic Solution Approach

Structural insights from the problem domain aid in designing effective heuristic solution methods
(e.g., Nadar et al. 2016, Zhou et al. 2019, Avci et al. 2021). Accordingly, Lemma 3 and Theo-
rems 1-2 characterize the optimal policy structure under positive electricity prices, providing a
foundation for our heuristic solution approach. However, unlike other commodities, electricity prices
can become negative. This often results from supply-demand imbalances driven by high renew-
able energy generation, limited storage capacity, and rigid generation constraints.* To address this,
we develop a heuristic solution procedure that explicitly accounts for negative electricity prices.
Our heuristic procedure calculates the state-dependent target levels for the storage and commit-
ment decisions in each period with a backward induction algorithm. The storage and commitment
actions in positive-price states are determined by the state-dependent target levels, while those
in negative-price states are determined by the myopically optimal storage decisions. We present
below two variants of this heuristic procedure for the discrete-state and discrete-action version of
our MDP. Let 9, S, and Z denote the discrete spaces of the commitment level, storage level, and

exogenous state variables (electricity price and wind speed), respectively.

5.1. Solution Approach via Complete State Space

The time-series models that we will adopt from the related literature for our numerical study
involve autoregressive of order one, AR(1), processes. We refer the reader to Zhou et al. (2019),
Avci et al. (2021), and Karakoyun et al. (2023) for detailed descriptions of this family of time-series
models and their calibration with real-world data. It is thus sufficient to include the mean-reverting
component of the price p;, the spike component of the price J;, and the deseasonalized wind speed
& as the exogenous state variables in our MDP. The spike component here represents sudden and
large moves in the price that are independent across periods. These jumps may arise for several
reasons such as unexpected power plant or transmission line outages and extreme weather events
(Seifert and Uhrig-Homburg 2007). With this new notation, we redefine I, = (p;, J;,&) € Z as the
exogenous state tuple in period t. We also define I, = (p;,&;) as the exogenous state tuple when
the spike component is omitted in period ¢, and Z as the discrete space of the exogenous state

variables without the spike; this notation is needed for our heuristic construction.

4 Despite its growing significance, negative pricing remains relatively underexplored in the operations research and
energy literature. Several studies have examined the interaction between negative prices and battery storage operations
(e.g., Zhou et al. 2016, Zhou et al. 2019, Kim et al. 2020, and Guerra et al. 2023), highlighting the need to incorporate
it into the decision-making process.
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Algorithm 1 Solution approach via complete state space.
1 08Y(Qr, Sr,Ir) < 0, V(Qr,Sr,I1) € QxS X T.
:fort=T-1,...,1do
for I, € 7 such that P, >0 do
(Y}(D)’HC(L), Zz(y)’HC(It)) < argmax(,, . coxs {R(V) (24, 1) +Ez7,. .7 T)ffl(qh ztjtﬂ)} } , V.

2

3

4

5 end for

6: for (Q.,S;,I;,) e QxS xZ do
7 if P, >0 then

8 Compute w}'® from Lemma 3.

9 Compute Z1(Q,, S,, ;) from Theorem 2 with Zt(”)(lt) replaced by Zt(")’HC(It), Y.

10: Compute s'¢ from Theorem 1 with Z;(Q,, S, I;) and w;(Qy, S;, I;) replaced by Z1(Q,, S,, I,)
and wHc

11: else

12: sHC <+ —min{Cs — S,,Ce,07Cr} and w!'c «+ 0.

13: end if

14: if P,>0and S, —sHc= Z<V)‘HC(It) for some v then

15: YHC(S, — $HC 1) <—Y(”> M)

16: else

17: Y (S, — s}, 1) «— argmax,, .o {E7t+1|7t [@tHfl (qe, S¢ — st'cjtﬂ)} } :

18: end if

19: thC — YHC(S, — st 1)

20: H(Qu, Si, 1) = R(Qu, 1, s8¢, wl) + By, 7, [0861 (', S0 — 87, T141)]-

21: end for
22: M(Qr, 81 1) + Ey, [vF(Q1, S, I)] , V(Qr, Si, 1) € QxS xT.
23: end for

For each period t € T and each state (Q;,S:,I;), we define v/'“(Q;, Sy, I;) as the value function
of our heuristic method, and Z"“(I,) and v,""""(I,) as the state-dependent target levels of our
heuristic method. Following Lemma 3 and Theorems 1-2, we compute these value functions and
target levels, as well as the corresponding action triplets (¢i'¢, sH¢ w!H), by backward induction.
See Algorithm 1. We call this method HC. We consider two main scenarios in this method:

e Suppose that the price is positive in the current state. We first calculate w!'¢ from Lemma 3.
We next compute the state-dependent target level ZH(Q,, S,, 1,) from Theorem 2 with Z"(I,)
replaced by Zt(”)’HC(It) Vv. We then compute s!'¢ from Theorem 1 with Z;/(Q,, S;, I;) replaced
by ZH(Q, Si, I;). Finally, if ZMMY(TL) s accessible, g = Y,""HC(1,). Otherwise, we calculate
gH¢ from equation (2).

e Suppose that the price is negative in the current state. We obtain w!'¢ =

0 (i.e., generate no
wind energy) and st = —min{Cs—S;,Cc,07Cr} (i.e., purchase as much energy as possible)

from the myopically optimal solution, but we calculate ¢/'“ again from equation (2).
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The number of states in which we need to compute the target levels in each period is of order
O(]Z]) and the number of feasible action triplets that we need to consider for target level compu-
tation in each state is of order O(|Q||S|): the total number of operations required to exhaustively
search the action triplets is of order O(T'|Q||S||Z]). To speed up computation and save memory,
we calculate first the value function o§¢, (Sps1, Qri1, Liv1) =By, [05'5 (Qer1, Siv1, Li11)] in state
(Si41,Q41,1,41) in period t+ 1 and then the action triplet in state (Q,, Sy, I;) in period t, using
the target levels calculated with @ff1(5t+1,Qt+1jt+1) and the expectation taken with respect to
I,.1|I,. This heuristic method accelerates the standard DP algorithm of our problem, without loss

of optimality for systems with positive prices.

5.2. Solution Approach via Reduced State Space

Our method HC calculates the target levels in period t for each exogenous state tuple I; in the set
T; see step 3 of Algorithm 1. If the spike component of the price is assumed to be zero, the set 7
can be reduced to the set Z in Algorithm 1. Since |Z| = |Z|/|J| where J is the discrete set of the
spike component, the zero-spike assumption significantly reduces the computations of Algorithm 1.
We thus consider a reduced state-space version of our method HC that calculates the target levels,
which we denote by Z"R(Q,, S;, ;) and Y/R(S,,1,1,), by executing Algorithm 1 with J replaced by
J"R:={0}. This variant of our method HC determines the storage action in each state with a zero
spike value and a positive price via the target level Z'®(Q,,S;,T;), but takes a myopic approach in
other states. It also myopically determines the wind power generation action in each state. Finally,
it determines the commitment action in each state via the target level Y,"R(S;,1,1;). We call this
method HR. We construct Algorithm 2 to calculate the expected total cash flow of the resulting
heuristic policy with action triplets (¢}'%, s"R w!'R).

In methods HC and HR, we choose to impose the myopic actions in negative-price states because
the optimal policy structure is unavailable under negative prices, and the myopic actions are
immediately obtained and are expected to be optimal in many negative-price states. The number
of positive-price states is much greater than the number of negative-price states in each of our
data-calibrated instances in Section 6. This has two implications: First, the myopic action in a
negative-price state — charging the battery as much as possible — is also sensible from a forward-
looking perspective since the price will very likely be positive in the next period. Second, the
myopic actions in negative-price states, if suboptimal, can only slightly drain the total profit since
the negative-price states have only a limited contribution to the total profit. In method HR, we

choose to impose the myopic actions in nonzero-spike states because the existence of a spike in any
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Algorithm 2 Solution approach via reduced state space.
1 08R(Qr, Sr,Ir) < 0, V(Qr,Sr,I7) € QxS X T.
2: fort=T-1,...,1do
3: for (Q:,S:,I;) e QxS xZ do

4 if P, >0 then
5: Compute w!® from Lemma 3.
6 Compute
Z:‘R(Q“St,ig) if Jt:07
Zi <140 if J, >0,
Cs if J, <O0.
7: Compute st® from Theorem 1 with Z;(Q, S;, I;) and w;(Q,,S,, ;) replaced by Z, and w!®.
8: else
9: sR« —min{Cs — S,;,Cc,07Cr} and whR < 0.
10: end if
11: g;" = YIR(S, = /%, ).
12: U?R(Qtv Sta It) «— R(Qta Itv slt—'Ra wi—'R) + ]ETH_lth [,D?-El (q?Ra St - S?R77t+1)} .

13: end for
14: R(Q,, S, I,) + Ky, [va(Qt,St,It)] , Y(Qy, Sy, 1) € QxS xT.
15: end for

period leads to an extremely high or low price, making the forward-looking perspective less critical
and suggesting that the myopic action is likely to be optimal. Our numerical study in Section 6.2

verifies our intuition and justifies our use of myopic actions.

6. Numerical Results

We now conduct numerical experiments to evaluate the use of our heuristic methods HC and
HR in the general problem, comparing them to the standard DP algorithm (yielding the optimal
solution) with respect to objective value and computation time (Section 6.1). We also investigate
the potential cost of enforcing myopic actions in non-zero spike states as in our methods HC and
HR (Section 6.2). Finally, we examine the performance of several alternative solution methods with
the same experimental setup (Section 6.3).

We consider instances in which the planning horizon spans the first week of August (7= 168
hours). The wind farm consists of 100 wind turbines, each with a capacity of 1.5 MW, for a
total power capacity of 150 MW. This capacity reflects widely used models globally, such as the
General Electric GE 1.5 series (Sheridan et al. 2024). The energy capacity of the battery (Cyg) is
500 MWh and the charging/discharging capacities (Cc and Cp) are 40 or 60 MWh (see California
Energy Commission 2023 and Power Engineering 2023 for similar settings). The battery can thus

be fully charged or discharged in approximately ten hours, consistent with several examples in the
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related literature (Zhou et al. 2019 and U.S. Department of Energy 2020). The battery’s round-
trip efficiency (r = 0v) varies between 0.70 and 0.80 for a lead-acid battery, between 0.75 and
0.85 for a zinc-bromine battery, and between 0.90 and 0.95 for a lithium-ion battery (Zhou et al.
2016 and Arfeen et al. 2020). We thus restrict r to values from the set {0.7,0.8,0.9,1} (including
the perfect efficiency). The charging and discharging efficiencies of the battery (6 and ) are the
same and equal to the square-root of the round-trip efficiency. This assumption is common in
the literature (Ranaweera and Midtgard 2016, Zhou et al. 2016, Singh and Fernandez 2018, and
Shabani et al. 2021). The energy capacity of the transmission line (C7) is 200 MWh (Fernandez
et al. 2016, Zhou et al. 2019, Marins et al. 2020, Karakoyun et al. 2023, and Glaum and Hofmann
2023). The transmission line efficiency (7) is 0.95 or 1, reflecting typical efficiency losses observed
in practice (EIA 2023 and NYISO 2024). We restrict the imbalance parameters (K, K,,, K, , and
K,) to values from the set {0.6,0.7,...,1.4}\ {1}. These values are consistent with those commonly
observed in practice and reported in the literature (Lohndorf and Minner 2010, Chaves-Avila et al.
2014, Hassler 2017, RTE 2022, and PWC 2023).

We implement the time-series models described by Karakoyun et al. (2023) into the exogenous
stochastic process of our MDP. The negative price occurrence frequency (NPF) is 4.07% according
to these models. We consider this original setting as well as a hypothetical one where the price is
assumed to be always nonnegative. In all instances, the discretization level is 20 MWh, the initial
storage level S; is the closest state to Cs/2, the initial commitment level @Q); is the maximum
amount of energy that can be committed to selling, and the initial exogenous state I1 = (p1, J1,&1)
is (0,0,5). We construct a total of 48 instances with the above specifications. All computations

were executed on a dual 3.7 GHz Intel Xeon W-2255 CPU server with 96 GB of RAM.

6.1. Performance of Our Solution Approaches

Tables 2 and 3 exhibit the optimality gaps and computation times of our solution approaches. Our
method HC yields the optimal solution when the price is always positive (as shown in Lemma 3
and Theorems 1-2). We also observe that its optimal performance extends to instances where the
price can also be negative; its optimality gap is no larger than 0.00022% in Tables 2 and 3. Our
method HC reduces the computation time of the standard DP algorithm by up to 69 times.

Our method HR performs only slightly worse than our method HC with respect to objective
value: it yields solutions with a maximum distance of 0.85% and an average distance of 0.30% from
optimal. Our method HR, however, provides a further significant advantage in computations: the

execution of our method HR takes only half a minute while that of the standard DP algorithm
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Table 2 Optimality gaps and computation times when K, = K,, =0.9, K,, = K, = 1.1, Cs =500 MWh,
Cr =200 MWh.

Co=Cp NPF - , Optimality gaps Computation times (minutes)
HC HR Optimal policy HC HR
0.7 0.00% 0.40% 205.4 4.0 0.5
0.95 0.8 0.00% 0.32% 203.7 3.8 0.5
' 0.9 0.00% 0.28% 204.3 3.8 0.5
0 1 0.00% 0.24% 203.1 3.8 0.5
0.7 0.00% 0.40% 202.2 3.8 0.5
1 0.8 0.00% 0.32% 201.9 3.8 0.5
0.9 0.00% 0.27% 202.7 3.8 0.5
40 1 0.00% 0.24% 157.5 3.4 0.4
0.7 0.00% 0.21% 204.5 3.8 0.5
0.95 0.8 0.00% 0.16% 204.5 3.8 0.5
' 0.9 0.00% 0.15% 204.2 3.8 0.5
4.07% 1 0.00% 0.13% 203.1 3.8 0.5
0.7 0.00% 0.21% 202.6 3.8 0.5
1 0.8 0.00% 0.17% 202.9 3.8 0.5
0.9 0.00% 0.14% 202.3 3.8 0.5
1 0.00% 0.13% 157.1 3.4 0.4
0.7 0.00% 0.85% 318.8 4.7 0.5
0.95 0.8 0.00% 0.65% 319.5 5.2 0.6
' 0.9 0.00% 0.52% 319.3 5.4 0.6
0 1 0.00% 0.44% 317.3 5.4 0.6
0.7 0.00% 0.84% 319.2 4.7 0.5
1 0.8 0.00% 0.65% 317.3 5.1 0.5
0.9 0.00% 0.48% 321.4 5.3 0.6
60 1 0.00% 0.40% 248.7 4.8 0.5
0.7 0.00% 0.49% 318.8 4.8 0.5
0.95 0.8 0.00% 0.36% 319.4 5.1 0.6
' 0.9 0.00% 0.29% 319.3 5.4 0.6
4.07% 1 0.00% 0.25% 318.0 5.4 0.6
0.7 0.00% 0.48% 322.1 4.7 0.5
1 0.8 0.00% 0.37% 317.5 5.1 0.5
0.9 0.00% 0.27% 317.1 5.3 0.6
1 0.00% 0.22% 249.1 4.8 0.5

takes several hours. All these results highlight the high efficiency and scalability of our solution
methods constructed with structural knowledge.

We observe from Table 2 that our method HR induces lower optimality gaps when the bat-
tery charging/discharging capacities are small and the negative electricity prices are observed: The
decisions of our method HR, if suboptimal, can only slightly deviate from the optimal decisions
when the producer is better motivated for energy arbitrage but has limited flexibility in its charg-
ing/discharging decisions. We observe from Table 3 that the performance of our method HR is
relatively robust to changes in the imbalance parameters.

We also tested the performance of our methods on instances with NPF values up to 25.8%,



24 Optimal Hour-Ahead Commitment and Storage Decisions of Wind Power Producers

Table 3 Optimality gaps and computation times when C's =500 MWh, Cc = Cp =40 MWh, Cr =200 MWh,
NPF =4.07%, 7= 0.95, r = 0.8.

K, = K: K=K Optimality gaps Computation times (minutes)
HC HR Optimal policy HC HR
1.1 0.00% 0.30% 204.8 3.8 0.5
0.6 1.2 0.00% 0.26% 204.4 3.8 0.5
’ 1.3 0.00% 0.19% 205.0 3.8 0.5
1.4 0.00% 0.16% 205.1 3.8 0.5
1.1 0.00% 0.23% 205.6 3.8 0.5
0.7 1.2 0.00% 0.21% 204.7 3.9 0.5
’ 1.3 0.00% 0.16% 204.0 3.8 0.5
1.4 0.00% 0.16% 204.2 3.8 0.5
1.1 0.00% 0.21% 205.9 3.8 0.5
08 1.2 0.00% 0.19% 204.4 3.8 0.5
' 1.3 0.00% 0.18% 204.5 3.8 0.5
1.4 0.00% 0.19% 205.3 3.8 0.5
1.1 0.00% 0.16% 206.5 3.8 0.5
0.9 1.2 0.00% 0.16% 204.0 3.8 0.5
’ 1.3 0.00% 0.18% 205.2 3.8 0.5
1.4 0.00% 0.18% 205.8 3.8 0.5

obtained by increasing the spike occurrence probabilities.® Our method HC continues to yield the
optimal solution regardless of the NPF level. In contrast, the performance of our method HR
degrades as the NPF' level increases. This decline is primarily due to its target-level calculation
method, which relies on the zero-spike assumption that becomes more restrictive at higher NPF
values. Nevertheless, even in the extreme case of 25.8% NPF, HR performs only 3.62% worse than

the optimal solution.

6.2. Numerical Investigation of the Impact of Myopic Actions

Our method HC takes a myopic approach when the price is negative. Our method HR takes a
myopic approach when the price is positive and the spike is nonzero, or when the price is negative.
On our experimental test bed, on average, 5.7% of the positive-price states have nonzero spikes,
91.9% of the positive-price nonzero-spike states have positive spikes, and all of the negative-price
states have negative spikes. In our experiments, since the negative prices can only arise due to
negative spikes, our method HR indeed imposes the myopic actions in all nonzero-spike states,
while taking the forward-looking actions in all zero-spike states.

We intuitively expect the myopic actions of HR to be often optimal. We performed experiments

to test our intuition: We define MD as the percentage of the nonzero-spike states in which the

® Negative prices were observed in the U.S. about 4% of the time in 2021. These were concentrated in specific regions
such as parts of Kansas and Oklahoma within the Southwest Power Pool, where they accounted for over 25% of all
hours (Berkeley Lab 2021).
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Table 4 Numerical results when K, = K, =0.9, K, = K, =1.1, Cs =500 MWh, Cr =200 MWh.

Cc=Cp NPF T T MD MS-TCF FS-TCF NS-TCF
0.7 100.00% 26.99% 0.00% 73.01%

0.95 0.8 100.00% 27.08% 0.00% 72.92%

’ 0.9 100.00% 27.09% 0.00% 72.91%

0 1 100.00% 27.06% 0.00% 72.94%
0.7 100.00% 26.99% 0.00% 73.01%

1 0.8 100.00% 27.08% 0.00% 72.92%

0.9 100.00% 27.08% 0.00% 72.92%

40 1 100.00% 27.05% 0.00% 72.95%
0.7 99.30% 27.48% 0.04% 72.48%

0.95 0.8 99.40% 27.45% 0.04% 72.51%

’ 0.9 99.49% 27.42% 0.03% 72.55%

4.02% 1 99.57% 27.36% 0.02% 72.61%
0.7 99.33% 27.37% 0.04% 72.58%

1 0.8 99.43% 27.35% 0.04% 72.62%

0.9 99.51% 27.33% 0.03% 72.64%

1 99.60% 27.27% 0.02% 72.70%

0.7 69.80% 16.55% 11.93% 71.52%

0.95 0.8 71.53% 17.26% 11.19% 71.55%

’ 0.9 74.91% 18.67% 9.68% 71.65%

0 1 78.14% 19.84% 8.40% 71.76%
0.7 69.67% 16.88% 12.27% 70.86%

1 0.8 71.40% 17.67% 11.53% 70.80%

0.9 73.18% 18.99% 10.09% 70.92%

60 1 79.83% 20.27% 8.65% 71.08%
0.7 81.42% 17.82% 11.93% 70.25%

0.95 0.8 82.60% 18.41% 11.19% 70.40%

’ 0.9 84.48% 19.56% 9.88% 70.56%

4.02% 1 86.81% 20.86% 8.39% 70.75%
0.7 81.43% 17.62% 11.99% 70.39%

1 0.8 82.60% 18.18% 11.24% 70.58%

0.9 83.77% 18.85% 10.45% 70.70%

1 87.63% 21.30% 7.82% 70.87%

myopic decision is optimal according to the exact solution algorithm (i.e., the percentage of the
myopic actions of HR that are indeed optimal). We also define FS-TCF as the percentage of the
total cash flow that comes from the revenues collected in the nonzero-spike states in which the
optimal decision is forward-looking (as opposed to myopic in HR). See Tables 4 and 5 for our results
on the same test bed as in Section 6.1. We have found that MD is 92.55% and FS-TCF is only
3.49% on average. These results verify our intuition and show that the myopic decisions of HR, if
not optimal, can only slightly drain the profits. We note that MD is substantially lower when the
charging/discharging capacities are large and thus the level of flexibility in charging/discharging
decisions is high.

We also examined the contribution of the nonzero-spike states to the total cash flow according

to the exact solution algorithm: We define MS-TCF as the percentage of the total cash flow that
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Table 5 Numerical results when Cs =500 MWh, Cc = Cp =40 MWh, Cr =200 MWh, NPF =4.07%, 7 = 0.95,

r=0.8.
K,=K, K,=K, MD MS-TCF FS-TCF NS-TCF
1.1 99.37% 25.95% 0.04% 74.01%
0.6 1.2 99.23% 25.81% 0.05% 74.14%
’ 1.3 99.12% 25.68% 0.06% 74.26%
1.4 99.05% 25.61% 0.07% 74.32%
1.1 99.38% 26.50% 0.04% 73.46%
0.7 1.2 99.24% 26.41% 0.05% 73.54%
’ 1.3 99.13% 26.34% 0.06% 73.60%
1.4 99.06% 26.33% 0.07% 73.60%
1.1 99.39% 27.01% 0.04% 72.95%
08 1.2 99.26% 26.96% 0.05% 72.99%
’ 1.3 99.17% 26.94% 0.05% 73.01%
1.4 99.09% 26.95% 0.06% 72.99%
1.1 99.40% 27.45% 0.04% 72.51%
0.9 1.2 99.28% 27.47% 0.04% 72.49%
’ 1.3 99.20% 27.49% 0.05% 72.46%
1.4 99.12% 27.49% 0.06% 72.45%

comes from the revenues collected in the nonzero-spike states in which the optimal decision is
myopic. We define NS-TCF as the percentage of the total cash flow that comes from the revenues
collected in the zero-spike states (in which HR takes the forward-looking perspective). Note that
the sum of MS-TCF, FS-TCF, and NS-TCF equals one in each instance. See again Tables 4 and 5.
We observe that the percentage of the total cash flow that comes from the revenues collected in the
nonzero-spike states (MS-TCF plus FS-TCF) is 27.40% on average: the zero-spike states have a
much greater impact on total cash flow than the nonzero-spike states, making the forward-looking
perspective critical in our experiments. The myopic decisions of HR (in the nonzero-spike states)
alone cannot guarantee a near-optimal performance. The higher level of sophistication that HR

involves via forward-looking decisions (in the zero-spike states) is clearly useful.

6.3. Alternative Solution Methods

Our method HC takes a myopic approach in negative-price states and our method HR extends
this approach to nonzero-spike states. We now evaluate the use of a myopically optimal policy that
adopts the optimal solution of the two-period problem in each state (even when the price is positive
and the spike component is zero) as an alternative heuristic approach for our problem. We call
this method M. We consider here the two-period problem because the commitment decision in the
current period can only affect the payoff in the next period. See Tables 6 and 7 for our results on
the same test bed as in Section 6.1. We have found that the myopic policy yields solutions with an

average distance of 8.88%, a maximum distance of 11.38%, and a minimum distance of 7.26% from
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Table 6 Optimality gaps for alternative solution methods when K, = K, =0.9, K,, = K, = 1.1, Cs =500
MWh, Cr =200 MWh.

Optimality gaps

Ce=Cp NPF T r
M F1 F2 DR
0.7 7.63% 11.30% 11.28% 3.13%
0.95 0.8 7.96% 8.20% 10.42% 3.43%
’ 0.9 8.54% 6.20% 8.45% 2.27%
0 1 9.03% 5.10% 7.41% 2.25%
0.7 7.67% 7.50% 7.75% 3.18%
1 0.8 7.96% 5.20% 6.86% 3.50%
0.9 8.44% 4.20% 5.27% 2.30%
40 1 9.01% 3.70% 4.92% 2.45%
0.7 7.26% 10.80% 10.78% 2.54%
0.95 0.8 7.67% 7.70% 9.82% 2.77%
: 0.9 8.46% 5.80% 7.92% 2.17%
1.02% 1 8.84% 4.80% 6.98% 2.10%
0.7 7.29% 7.00% 7.19% 2.59%
i 0.8 7.68% 4.80% 6.48% 2.83%
0.9 8.47% 3.90% 4.96% 2.19%
1 8.83% 3.50% 4.64% 2.34%
0.7 9.73% 14.90% 14.89% 4.05%
0.95 0.8 10.19% 11.50% 13.75% 4.34%
) 0.9 10.86% 7.60% 9.53% 3.12%
0 1 11.38% 5.40% 8.23% 3.02%
0.7 9.80% 10.00% 10.52% 4.08%
1 0.8 10.19% 6.60% 8.94% 4.41%
0.9 10.75% 4.50% 6.33% 3.20%
60 1 11.35% 4.00% 5.42% 3.31%
0.7 8.99% 13.90% 13.92% 3.30%
0.95 0.8 9.57% 10.80% 12.7% 3.52%
’ 0.9 10.55% 6.90% 8.65% 2.95%
1.02% 1 10.92% 4.90% 7.52% 2.81%
0.7 9.09% 9.00% 9.51% 3.33%
1 0.8 9.63% 6.00% 8.18% 3.60%
0.9 10.60% 4.10% 5.71% 3.04%
1 10.93% 3.80% 4.90% 3.15%

optimal. Comparing these results with our results for HC and HR, a forward-looking approach is
arguably more suitable in positive-price states that are not dominantly large.

We also evaluate the use of fixed threshold policies as another heuristic approach for our problem.
The target storage and commitment levels vary with the exogenous state variables in Theorems 1—
2. For the fixed threshold policy, however, the target levels remain constant within each period but
vary from one period to another. We consider two variants of the fixed threshold policy, which we
call F1 and F2, respectively. F'1 calculates the target levels in period ¢ by restricting the exogenous
state tuple I; to its prediction I, based on the initial state tuple I; in the backward algorithm of our
method HC. The prediction for k£ periods later is found by first raising the transition probability

matrices (obtained from the time-series models) to the kth power and then taking the expectations
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Table 7  Optimality gaps for alternative solutions methods when Cs =500 MWh, Cc = Cp =40 MWh,
Cr =200 MWh, NPF =4.07%, 7= 0.95, r = 0.8.

Optimality gaps

K,=K, K,=K,
M F1 F2 DR
1.1 7.99% 4.80% 4.92% 4.14%
0.6 1.2 8.52% 4.20% 4.21% 3.28%
: 1.3 8.44% 4.20% 4.16% 3.18%
1.4 8.53% 4.40% 4.36% 3.30%
1.1 7.86% 4.40% 4.42% 3.28%
o 1.2 8.40% 4.00% 3.95% 2.70%
: 1.3 8.36% 4.00% 4.03% 2.72%
1.4 8.33% 4.30% 4.33% 2.94%
1.1 7.77% 4.10% 4.76% 3.24%
0.8 1.2 8.37% 4.00% 5.03% 3.05%
) 1.3 8.24% 4.40% 5.04% 3.27%
1.4 8.13% 4.70% 5.34% 3.64%
1.1 7.67% 7.70% 9.82% 2.77%
0.9 1.2 8.21% 7.30% 7.92% 3.13%
’ 1.3 8.12% 7.80% 8.12% 3.56%
1.4 7.93% 7.80% 7.41% 4.12%

via the resulting distributions. F2 calculates the target levels in period ¢ by taking the expectation
over the exogenous state tuple I; conditional on the initial state tuple I;. Specifically, we change
step 4 in the backward algorithm of our method HC to

()Q<”>7”C,Z§”>7”C><— arg max {E[tul [R(”)(Zt(”),[t)JrE @;'fl(ift@),zt(”)jm)ﬂ}.

(Yt(l’)’ng))eQxS Tl

Like our method HR, both F1 and F2 use the target levels to determine the storage and commitment
decisions in states with a zero spike value and a positive price, and take the myopic approach in
all other states. See again Tables 6 and 7 for our results. We have found that F1 yields solutions
with an average distance of 6.36%, a maximum distance of 14.90%, and a minimum distance of
3.50% from optimal. F2 yields solutions with an average distance of 7.45%, a maximum distance
of 14.89%, and a minimum distance of 3.95% from optimal. These results imply that ignoring the
state information in target level calculation causes a significant loss of optimality, demonstrating
the usefulness of state-dependent policies in our problem.

Finally, we consider a deterministic reoptimization heuristic that solves a simpler version of our
problem in each period obtained by replacing the random components with their expected values
conditional on the current state. We call this method DR. The deterministic problem in state
(Q:, S, 1) is given by

max Z R(qy—1, 1.5, 59, wy)

{(q"?"sn’wn’sg)}neT:nZt neT >t



Optimal Hour-Ahead Commitment and Storage Decisions of Wind Power Producers 29

where S; =S5,, S} ., =5, —s,, V0> t, @1 = Q, (qy Spywy) €U(qy-1,5),11,), ¥n >t, and I, =
(P, Wy, is the expected exogenous state in period 7 conditional on the exogenous state I; in
period t. The objective is to maximize the total cash flow in periods from t through 7. The
objective function can be linearized when P, , >0, V1 > t, since the payoff function in each period
can be shown to be the minimum of affine functions in this case. This heuristic restricts all price
expectations to be nonnegative and solves a linear program when P, > 0: the actions in period ¢
are given by the optimal actions of period ¢ obtained from the linear program. It takes a myopic
approach when P, <0: the actions in period ¢ are given by the optimal actions of the two-period
problem with states I, ; and I, ;. See again Tables 6 and 7 for our results. This heuristic yields
solutions with an average distance of 3.12%, a maximum distance of 4.41%, and a minimum distance

of 2.10% from optimal, performing worse than HC and HR. The precise modeling of uncertainties

as in HC and HR thus seems useful in our problem setting.

7. Concluding Remarks

We have examined the energy commitment, generation and storage problem for a wind farm paired
with a battery in the presence of uncertainties in the electricity price and wind speed. The power
producer participates in an electricity market that operates with hourly commitments and set-
tlements. Modeling this problem as an MDP, we establish the optimality of a state-dependent
threshold policy for the storage and commitment problem under positive electricity prices. Lever-
aging this policy structure, we construct two heuristic solution methods (HC and HR) for the more
general problem in which the price can also be negative. With data-calibrated time series models
for the electricity price and wind speed, we numerically test the performance of these solution
methods in the general problem.

Our experiments have revealed the optimal performance of our method HC in all instances.
Furthermore, our method HC has an average solution time of 4.2 minutes, whereas the standard
DP algorithm has an average solution time of almost 4 hours. Our method HR, on the other
hand, provides near-optimal solutions with an average distance of 0.30% from optimal within half a
minute. Our experiments have also revealed the relatively poor performance of simpler alternative
solution methods (purely myopic solution approach, fixed threshold policies, and deterministic
reoptimization heuristic) with respect to objective value.

Future research may consider other market settings in which the power producer makes commit-
ments for a longer time window (e.g., day-ahead markets) or for multiple time windows of different

lengths (e.g., sequential markets). Despite the added complexity of these settings, our results could
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inform the design of simplified policy structures that serve as effective heuristic solutions. One such
setting is a two-settlement electricity market where the producer first makes commitments in the
day-ahead market and then settles real-time deviations at imbalance prices in the balancing market.
In this setting, our policy structure could be adapted to determine hourly energy generation and
storage levels, conditional on the prespecified day-ahead commitments and prices. This approach
may perform well by accounting for intraday price and supply uncertainties that have immediate
effects, without requiring full consideration of day-ahead market dynamics that have more indirect
effects. Future research may also extend our work by incorporating investment-related decisions
and examining the impact of cycle-induced battery degradation on long-term profitability and

operational strategy.

Acknowledgments

This research has been supported by the Scientific and Technological Research Council of Turkey
(TUBITAK) [Grant 118M419].

References

Arfeen, Z. A., Abdullah, M. P.; Hassan, R., Othman, B. M., Siddique, A., Rehman, A. U., & Sheikh, U. U.
(2020). Energy storage usages: Engineering reactions, economic-technological values for electric vehi-

cles—a technological outlook. International Transactions on Electrical Energy Systems, 30(9):e12422.

Avci, H., Karakoyun, E. C., Kocaman, A., Nadar, E., & Toufani, P. (2021). Integration of pumped hydro

energy storage and wind energy generation: Structural analysis and algorithms. Working paper.

Bergler, J., Heim, S., & Hiischelrath, K. (2017). Strategic capacity withholding through failures in the

german-austrian electricity market. Energy Policy, 102:210-221.

Berkeley Lab (2021). Berkeley lab study investigates how plentiful electricity turns wholesale prices negative
in the US. https://emp.lbl.gov/news/berkeley-lab-study-investigates—how. Accessed April
30, 2025.

Beyene, T. D. & Tsao, Y.-C. (2024). Sustainable and 5g enhanced power distribution network design consid-
ering renewable energy generation and dynamic electricity pricing. Energy, Ecology and Environment,
pages 1-15.

Bhattacharjee, S., Sioshansi, R., & Zareipour, H. (2020). Benefits of strategically sizing wind-integrated
energy storage and transmission. IEEE Trans. Power Syst., 36(2):1141-1151.

California  Energy Commission (2023). CEC awards $30 million to 100-hour, long-
duration energy storage project. https://www.energy.ca.gov/news/2023-12/
cec-awards-30-million-100-hour-long-duration-energy-storage-project. Accessed April 30,

2025.



Optimal Hour-Ahead Commitment and Storage Decisions of Wind Power Producers 31

Chaves—Avila, J. P., van der Veen, R. A., & Hakvoort, R. A. (2014). The interplay between imbalance pricing

mechanisms and network congestions—analysis of the german electricity market. Util. Policy, 28:52-61.

Chen, X., Liu, Y., & Wu, L. (2024). Towards improving unit commitment economics: An add-on tailor for
renewable energy and reserve predictions. IEEE Trans. Sustain. Energy.

Deloitte (2024). 2025 renewable energy industry outlook. https://www2.deloitte.com/us/en/insights/
industry/renewable-energy/renewable-energy-industry-outlook.html.  Accessed April 30,
2025.

Diaz, G., Coto, J., & Gdémez-Aleixandre, J. (2019). Optimal operation value of combined wind power and
energy storage in multi-stage electricity markets. Appl. Energy, 235:1153-1168.

Ding, H., Pinson, P., Hu, Z., & Song, Y. (2015). Integrated bidding and operating strategies for wind-storage
systems. IEEE Trans. Sustain. Energy, 7(1):163-172.

DOE (2024). An update to the energy storage grand challenge 2020 roadmap. https:
//wuw.energy.gov/sites/default/files/2024-12/D0OE),20--%20DRAFT},20Energy’20Storage
20Strategy%20%20Roadmap_Dec2024_public}20comment .pdf. Accessed April 30, 2025.

EIA (2023). How much electricity is lost in electricity transmission and distribution in the united states?
https://www.eia.gov/tools/faqgs/faq.php?id=105&t=3. Accessed January 27, 2025.

EIA (2024a). Electricity 2024. https://www.iea.org/reports/electricity-2024. Accessed April 30,
2025.

EIA (2024b). U.S. battery storage capacity expected to nearly double in 2024. https://www.eia.gov/
todayinenergy/detail.php?id=61202. Accessed April 30, 2025.

Eicke, A., Ruhnau, O., & Hirth, L. (2021). Electricity balancing as a market equilibrium: An instrument-
based estimation of supply and demand for imbalance energy. Energy Econ., 102:105455.

EPRI (2024). Overview of energy storage wholesale market participation. https://www.epri.com/
research/products/000000003002029194. Accessed April 30, 2025.

Fernandez, E., Albizu, 1., Bedialauneta, M., Mazon, A., & Leite, P. T. (2016). Review of dynamic line rating
systems for wind power integration. Renew. Sust. Energ., 53:80-92.

Finnah, B. & Gonsch, J. (2021). Optimizing trading decisions of wind power plants with hybrid energy
storage systems using backwards approximate dynamic programming. Int. J. Prod. Econ., 238:108155.

Glaum, P. & Hofmann, F. (2023). Leveraging the existing german transmission grid with dynamic line
rating. Appl. Energy, 343:121199.

Gonsch, J. & Hassler, M. (2016). Sell or store? An ADP approach to marketing renewable energy. OR

Spectr., 38(3):633-660.



32 Optimal Hour-Ahead Commitment and Storage Decisions of Wind Power Producers

Grillo, S., Pievatolo, A., & Tironi, E. (2015). Optimal storage scheduling using markov decision processes.

IEEFE Trans. Sustain. Energy, 7(2):755-764.

Guerra, E., Bobenrieth, E., Bobenrieth, J., & Wright, B. D. (2023). Endogenous thresholds in energy prices:

Modeling and empirical estimation. Energy Econ., 121:106669.

Harsha, P. & Dahleh, M. (2014). Optimal management and sizing of energy storage under dynamic pricing

for the efficient integration of renewable energy. IEEE Trans. Power Syst., 30(3):1164-1181.

Hassler, M. (2017). Heuristic decision rules for short-term trading of renewable energy with co-located energy
storage. Comput. Oper. Res., 83:199-213.

He, G., Chen, Q., Kang, C., Xia, Q., & Poolla, K. (2016). Cooperation of wind power and battery storage
to provide frequency regulation in power markets. IEEE Trans. Power Syst., 32(5):3559-3568.

Jeong, J., Kim, S. W., & Kim, H. (2023). Deep reinforcement learning based real-time renewable energy

bidding with battery control. IEEE Transactions on Energy Markets, Policy and Regulation.

Jiang, D. R. & Powell, W. B. (2015). Optimal hour-ahead bidding in the real-time electricity market with

battery storage using approximate dynamic programming. INFORMS J. Comput., 27(3):525-543.

Karakoyun, E. C., Avci, H., Kocaman, A. S., & Nadar, E. (2023). Deviations from commitments: Markov

decision process formulations for the role of energy storage. Int. J. Prod. FEcon., 255:108711.

Khaloie, H., Mollahassani-Pour, M., & Anvari-Moghaddam, A. (2020). Optimal behavior of a hybrid power
producer in day-ahead and intraday markets: A bi-objective cvar-based approach. IEEE Trans. Sustain.
Energy, 12(2):931-943.

Kim, H. J., Sioshansi, R., & Conejo, A. J. (2020). Benefits of stochastic optimization for scheduling energy
storage in wholesale electricity markets. J. Mod. Power Syst. Clean Energy, 9(1):181-189.

Kim, J. H. & Powell, W. B. (2011). Optimal energy commitments with storage and intermittent supply.
Oper. Res., 59(6):1347-1360.

Lohndorf, N. & Minner, S. (2010). Optimal day-ahead trading and storage of renewable energies—an approx-
imate dynamic programming approach. Energy Syst., 1(1):61-77.

Lohndorf, N.;, Wozabal, D., & Minner, S. (2013). Optimizing trading decisions for hydro storage systems

using approximate dual dynamic programming. Oper. Res., 61(4):810-823.

Ma, Y., Hu, Z., & Song, Y. (2022). Hour-ahead optimization strategy for shared energy storage of renew-
able energy power stations to provide frequency regulation service. IEFEE Trans. Sustain. Energy,

13(4):2331-2342.

Mansouri, M. A. & Sioshansi, R. (2022). Using interim recommitment to reduce the operational-cost impacts

of wind uncertainty. J. Mod. Power Syst. Clean Energy, 10(4):839-849.



Optimal Hour-Ahead Commitment and Storage Decisions of Wind Power Producers 33

Marins, D. S.,; Antunes, F. L., & Sampaio, M. V. F. (2020). Increasing capacity of overhead transmis-
sion lines—a challenge for brazilian wind farms. In 2020 6th IEEE International Energy Conference

(ENERGYCon), pages 434-438. IEEE.

Nadar, E., Akan, M., & Scheller-Wolf, A. (2016). Experimental results indicating lattice-dependent policies

may be optimal for general assemble-to-order systems. Production Oper. Management, 25(4):647-661.

NYISO (2024). Loss price component. https://www.nyiso.com/documents/20142/25467833/
LBMP-Loss-Price-Component .pdf/d882794e-619a-2181-d367-475ab0fdf897. Accessed January

27, 2025.

Parker, G. G., Tan, B., & Kazan, O. (2019). Electric power industry: Operational and public policy challenges

and opportunities. Production Oper. Management, 28(11):2738-2777.

Peng, X., Wu, O. Q., & Souza, G. C. (2024). Renewable, flexible, and storage capacities: Friends or foes?

Manufacturing Service Oper. Management.

Power Engineering  (2023). Another 500 MWh of Dbattery storage capacity now
online in Texas. https://www.power-eng.com/energy-storage/batteries/
more-than-500-mwh-of-battery-storage-capacity-now-online-in-texas/. Accessed April 30,

2025.

PWC (2023). Overview of the Turkish electricity market. https://www.pwc.com.tr/tr/sektorler/

enerji/2024/overview-of-the-turkish-electricity-market-2023.pdf. Accessed April 30, 2025.

Ranaweera, 1. & Midtgard, O.-M. (2016). Optimization of operational cost for a grid-supporting PV system

with battery storage. Renew. Energy, 88:262-272.

RTE (2022). Imbalance  settlement  price. https://www.services-rte.com/
en/learn-more-about-our-services/becoming-a-balance-responsible-party/

Imbalance-settlement-price.html. Accessed January 27, 2025.

Seifert, J. & Uhrig-Homburg, M. (2007). Modelling jumps in electricity prices: theory and empirical evidence.
Review of Derivatives Research, 10(1):59-85.

Shabani, M., Dahlquist, E., Wallin, F., & Yan, J. (2021). Techno-economic impacts of battery performance
models and control strategies on optimal design of a grid-connected PV system. FEnergy Convers.

Manag., 245:114617.

Sheridan, L. M., Kazimierczuk, K., Garbe, J. T., & Preziuso, D. C. (2024). Distributed wind market report:
2024 edition. Technical report, Pacific Northwest National Laboratory (PNNL), Richland, WA (United

States).

Shinde, P., Hesamzadeh, M. R., Date, P., & Bunn, D. W. (2020). Optimal dispatch in a balancing market

with intermittent renewable generation. IEEE Trans. Power Syst., 36(2):865-878.



34 Optimal Hour-Ahead Commitment and Storage Decisions of Wind Power Producers

Singh, S. S. & Fernandez, E. (2018). Modeling, size optimization and sensitivity analysis of a remote hybrid

renewable energy system. Energy, 143:719-731.

Sunar, N. & Birge, J. R. (2019). Strategic commitment to a production schedule with uncertain supply and

demand: Renewable energy in day-ahead electricity markets. Management Sci., 65(2):714-734.

Tang, Y., He, H., Ni, Z., & Wen, J. (2015). Optimal operation for energy storage with wind power generation
using adaptive dynamic programming. In 2015 IEEE Power & Energy Society General Meeting, pages
1-6. IEEE.

Tsao, Y.-C., Banyupramesta, I. G. A., & Lu, J.-C. (2025). Optimal operation and capacity sizing for
a sustainable shared energy storage system with solar power and hydropower generator. J. Energy

Storage, 110:115173.

Tsao, Y.-C. & Vu, T.-L. (2023). Distributed energy storage system planning in relation to renewable energy
investment. Renew. Energy, 218:119271.

U.S. Department of Energy (2020). FEnergy storage market report 2020. https://www.energy.gov/
energy-storage-grand-challenge/downloads/energy-storage-market-report-2020. Accessed
April 30, 2025.

Zhang, R., Jiang, T., Li, F., Li, G., Chen, H., & Li, X. (2020). Coordinated bidding strategy of wind
farms and power-to-gas facilities using a cooperative game approach. IEEE Trans. Sustain. Energy,
11(4):2545-2555.

Zhou, Y., Scheller-Wolf, A., Secomandi, N., & Smith, S. (2016). Electricity trading and negative prices:
storage vs. disposal. Management Sci., 62(3):880-898.

Zhou, Y., Scheller-Wolf, A., Secomandi, N., & Smith, S. (2019). Managing wind-based electricity generation

in the presence of storage and transmission capacity. Production Oper. Management, 28(4):970-989.



e-companion to Optimal Hour-Ahead Commitment and Storage Decisions of Wind Power Producers ecl

Online Technical Appendix. Proofs of the Analytical Results
Proof of Lemma 1. Let @, and @, denote some bounds on E(s,,w,) in state (Q,,S;, ;) such that Q: <
E(sy,w;) < Q,. Note that R(-, 1, s;,w;) is a decreasing function for Q, > E(s;,w,) since P,(1 — K,) <0 if

P,>0and P,(1-K;)<0if P, <0. Thus R(Q, + a, I, 5,,w;) < R(Qy, I, s;,w,) for a > 0. This implies that

v(Q+a, S, 1) = ma, {R i+ o, L, s, w,)+E {v* , S, 1 }}
P (Q: +,11) (qt’shwt)ewéﬂ’shm (Qe ¢ 8¢, Wy) Tl t+1(qt 15 Le11)

< max {R(QtvIuStawt) +Elt+1\1t {'U;q(q“ St+1; It+1)] } = U:(Qtv St,It)~ (EC~1)

(qt,st,wt)€U(Q¢,S¢,1¢)
Also, note that R(-, I, s;,w;) is an increasing function for @, < F(s,,w;) since P,(1 — K,) >0 when P, >0

and P,(1— K, ) >0 when P, <0. Thus R(Q: — a, I, s, wy) < R(Qy, Iy, 8¢, w;) for a > 0. This implies that

U; (Qt —Q, Sult) = {R(Qt —o, 1y, s, wt) +E1t+1\1t [Uf_;_l(q“ Sz+1>[t+1)} }

max
B (qt,st,we) EU(Qt—a,St,1t) -

max {R(Qt,ft,sz,wt) +Ei [U;H(qt,sm,ftﬂ)} } =0 (Qu. S, I,). (EC.2)

(gt,5t,wt)€V(Q4,St,1t)

Let 1 (Qy,S:, I,) = (g,5,w). Assume to the contrary that ¢ > Q,.;. Then v} (Q,,S;, ;) = R(Qy, I, s,w) +
E {v;‘H(q, Sy — s, It+1)} > R(Q:,I;,s,w)+E |:U:+1(Qt+la S — s,IHl)} . But this leads to a contradiction since
074 1(¢, S — 8, Lp1) <071 (Qit1, Se — 8, Ii11) from (EC.1). Hence g < Qy41. Now, assume to the contrary that
q < Q1. Then vy (Qy, Sy, 1) = R(Qy, I, s,w) + E [varl(q,St - s,ItH)} > R(Q¢, I, s,w) +E [’U:H(Qtﬂa Sy —
s,IH_l)] But this leads to a contradiction since v;, (¢, Sy — 5, Ii11) < v} 1(Qit1,S: — 8, 141) from (EC.2).
Hence ¢ > Q,41. We showed that Q.11 < ¢ < Q,11. Since —min{(Cs — S;11)/(07), E} < E(Sy41,Wes1) <
min{7(vS;;1 + f), E}, note that —min{(Cs — (S, — 5,))/(07), B} < ¢, <min{7(y(S, — s,) + f),E}, Vt € T.
Since Q,11 = ¢;, we have —min{(Cs — S,)/(07), B} < Q, <min{7(yS, + f),E}, vt T\{1}. O

Proof of Lemma 2. Note that vi(Qr,Sr,Ir) = viH(Qr,Sr + o,Iy) = 0 for « > 0. Assuming
Vi1 (Qug1, Seg1, Lep1) < 0) 1 (Qugr, Sevr + o, liq1), we show v/ (Qy, Se, 1) < v;(Q+,S: + a,l;). Let
05 (Q:, Si, It) = (¢, 8,w). Also, let § =max{s,S; +a—Cs} and

W {w if s=s,
max{0,w—(§—s)/0} if §#s.
We show that (g,8,%) € U(Q;, S; + o, I,): If s < Sy + a— Cs, since (¢, s,w) € U(Q;,S:, I;), note that —C¢ <
s<S;+a—-Cs=5<min{S;+a,Cp}. If s > S, +a—Cs, since (¢, s,w) € U(Q,, S, I;), note that —min{Cs —
Sy —a,Cc} <§=s<min{S; + a,Cp}. Thus —min{Cs — S; — a,Cc} < § <min{S; + a,Cp}. Since s < 3,
we have 0 < <w < f(W,). If § =35, then —Cr < E(s,w) =E(5,w) <7Cr. If s<§=5,+a—Cg <0, then
3/0 + =35/ + max{0,w — (§ — s5)/0} = max{§/0,s/0 + w} < Cr and —7Cr < s/0 + w < §/0 + . Hence
(¢,8,w) € U(Qy, St + a, I). We consider the following three cases to show that E(s,w) < E(§,w):

(1) If s> S, +a—Cg, then §=s and @ =w. Thus E(s,w) = E(5,0).

(2) fs<S;+a—Cs<0and —w<s/0 <0, then § <0 and §/6 + @ = max{§/0,s/0 + w} =s/0 +w > 0.
Thus E(s,w) = (s/0 +w)r=(8/0 + )T = E(8,0).
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B3) f s<S;,+a—Cs<0 and s/6 < —w <0, then § <0 and §/0 + & = max{§/0,s/0 + w} < 0. Thus
E(s,w) = (s/0+w)/7 < (5/0 +w)/7 = E(8, ).
Hence E(s,w) < E(8,w). Thus R(Q,,I;,s,w) < R(Qy, I, $,w). Note § < s+ « since (g, s,w) € U(Q:, S, I).
Thus v} (Qy, S, I,) = R(Qy. I, s,w) +E [vf, 1 (, S, — s,[tﬂ)} <R(Q,,1,,5,0)+E [U;H(q, S, +a— §7It+1)} <
07 (Q¢, St + v, I,). The first inequality holds since v} 1 (Qi11, Stq1, Leg1) S Vi (Qig1, Ser + @, Lipq). O
Proof of Lemma 3. Let n;(Q.,S:,I;) = (q,s,w). Also, let @ := min{f(W,),Cr + min{Cs — S;,Cc}/6}
denote the maximum amount of wind energy that can be generated in state (Q:,S:,I;) and (g, $§,w) €
U(Q:, S, I;) denote any feasible action triplet with w < w. We will show that it is possible to construct a
feasible action triplet that is more profitable than the triplet (g, $,w) in each of the following four cases:
(1) Suppose that E(§,%) < 0: We define Ay = min{—7E(§,w),w —w} > 0. Note that —Cr < E(5,w) <
E,w)+A/T=EG,w+A)<0and 0 <w <w+A; <w< f(W,). Hence, (q, 8, w+ A1) € U(Q:, S, I})
and R(Qy, I, 8,0+ Ay) > R(Q4, I, §,%): The triplet (¢, $,w+ Ay) is better than the triplet (g, §,w).

(2) Suppose that E(5,%) >0 and § = —min{Cs — S,,Cc}: We define Ay =@ — w > 0. Note that 0 <
E(5,0) < E(§,W + Ap) = (§/0 + 0 + Ag)r = (§/0 + w)T < (—min{Cs — S,,Cc}/0 + Cr + min{Cy —
S, Cc}/0)r = 7Cr and 0 < < + Ay = w < f(W,). Hence, (q,8,0 + Az) € U(Qy,S;,I;) and
R(Q;, I, 5,% + As) > R(Qy, I, ,%): The triplet (g, 8,1 + Ay) is better than the triplet (g, §,w).

(3) Suppose that E(§,%) >0 and — min{Cs — S;,Cc} < § <0: We define Az = min{min{Cs — 5,,Cc}/0 +
§/0,w —w} > 0. Since 0 < Az <min{Cs — S;,Cc}/0+ §/0, note that —min{Cs —S;,Co} <§—0A; <
§<0. Also, note that E(8,w) = (§/0 +w)T = ((§ — 0A3)/0 + 0+ Az)T = E(§ — 0A3,% + A3z) and 0 <
W<+ Az <w< f(W,). Hence, (q,3 —0Az,1w+ As) € U(Q;, Sy, I;) and R(Qy, I, 8,%) = R(Qy, I;, 8 —
0As3,% + Az). Then, by Lemma 2,

R(Qtvlta ‘§aw) +E [U:+1(qa Sy — ‘§aIt+1) < R(Qta Iy, 38— 003,10+ AB) +E 'U:+1(Qa Sy —5+ 0A37It+1):| .
Thus, the triplet (¢, — Az, 1@ + A3) is better than the triplet (g, §, ).

(4) Suppose that E(§,w) >0 and § > 0: We define Ay = min{v$§,@ —w} > 0. Since 0 < A4 < ~3§, note that
0<8—Ay/y<5<min{S,,Cp}. Also, note that E(5,w) = (y§+ w)7 = (7(§ — Ay/7y) + 0 + Ay)T =
E(5—Ay/y,0+Ay) and 0 < <+ Ay <w < f(W,). Hence, (q,5§— Ay/y, 0+ Ay) € U(Qy, S, I;) and
R(Q:,I;,5,%) = R(Q¢, I, 8 — Ay /7y, + Ay). Then, by Lemma 2,

R(Qtvlﬂgaw) +]E |:v:+1(qut - ‘§a-[t+1) < R(Qta-[tv‘§ - A4/’Y,TZ)+A4) +E v:+1(q; St -3 +A4/77It+1):| .

Thus, the triplet (¢,8 — Ay/7y,% + Ay) is better than the triplet (g, §,w).
Hence we showed that w = @. Next, suppose that w = Cr + min{Cg — S;,Cc}/0. We will show that s =
—min{Cys — S;,Cc}. First, assume to the contrary that s > 0. In this case, wr < (vs + w)T = E(s,w) <
7Cp. But this leads to a contradiction since w > Cr. Thus s < 0. Note that —min{Cs — S;,Cc} < s since
(g,s,w) € U(Q:, St, I1). Also, note that (s/0 + Cr + min{Cs — S;,Cc}/0)T = E(s,w) < 7Cr, implying that

—min{Cs —S;,Cc} > s. Hence, the only feasible action is s = —min{Cs — S;,Cc}. O
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Proof of Proposition 1. Note that v.(-,-, Ir) is jointly concave. Assuming v; (-, -, [;41) is jointly concave,
we will prove v} (-, -, I) is jointly concave. Taking a similar path to that in Zhou et al. (2019), we convert our
problem to an equivalent one with linear constraints. We define the following decision variables:

e s¢C: The amount of energy charged into the battery from the wind energy generated;
e s¢F: The amount of energy charged into the battery from the energy purchased;

e sP: The amount of energy discharged from the battery;

e w¢: The amount of wind energy generated and charged into the battery; and

e w?: The amount of wind energy generated and sold in the market.

We define I'(Qy, S;, I;) as the set of decision variable tuples (g, sy, s¢”, s, wi,w)) € R x RY that satisfy

-E<q¢<E, (EC.3)
wf +vsP < Crp, (EC.4)
s J(07) < O, (EC.5)
599 = ow?, (EC.6)
wy +wy < f(W), (EC.7)
sP <min{S,,Cp}, (EC.8)

¢ 457 <min{Cs — S,,Cc}, (EC.9)
599 9P P wC w > 0. (EC.10)

Constraint (EC.3) builds upon Lemma 1. Constraints (EC.4) and (EC.5) are the transmission capacity
constraints for selling and buying energy, respectively. Constraint (EC.6) relates the decision w¢ to the
decision s¢¢. Constraint (EC.7) says the wind energy generated is bounded by the available wind potential.
Constraints (EC.8) and (EC.9) are the battery capacity constraints for discharging and charging energy,

respectively. We now consider the following problem:

(a4,s8C 5P, Dmg wS)ET(Q,Se.T1) {R(Q“IN (wf +’78tD)T - StCP/<97_>) +E U:—H(Qtvst +StCG + Stcp - StDvIt-H)}}
(EC.11)

where
QP+ K,P(e—Q,) ifQ.<e,
RO =Y 05—k, P(Qi—¢) Q. >e.
We show that the above problem is equivalent to ours by constructing an optimal solution to (EC.11) that
satisfies s? =0 or s79 4+ s = 0. Let (g,59¢,59%,57, 0w, w%) € T'(Q, S, I;) denote a feasible solution to
(EC.11). We consider the following two cases:
(1) Suppose that $” >0 and §F > 0: We define A; = min{s“”,5”} > 0. Note that (g, 3¢, 8" — A, —

A, 0%, w%) €T(Qy, Si, It) and (w0 4+v(8° — Aq))T— (897 — A1) /(07) > (0 +~v8P)7 — 9% /(07). Since
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R(Q,I;,-) is an increasing function, (g, 5%,8°F — A, 87 — Ay, w%,w%) yields a larger objective value
o (EC.11) than (¢,8°%,8°F 8P &, w%). Thus, (¢,8°%,8°F 8P % %) cannot be an optimal solution

o (EC.11) if 8 >0 and 5“7 > 0.

(2) Suppose that 82 >0, ¥ =0, and 8¢ > 0: We define Ay, = min{3°¢ 5P} > 0. Note that (g,3°¢ —
Ao, 59P 5P — Ag 0 — Ag/0,10° + vAs) € T(Q4, Si, ;) and (0% + yAs + (8P — Ag))T — 89F /(67) =
(W + v8P)T — 89 /(07). Thus, if (¢,59¢,8°F 8P, %) is an optimal solution to (EC.11), then
(G,89¢ — Ay, 87 8P — Ay, 0% — Ay /0,10° +~vAy) is also optimal with 89 +35°¢ — Ay =0o0r 8° — Ay =0
depending on the value of A,.
Thus v} (Q,S;, I;) equals the optimal objective value of (EC.11). Next, we show that |v}(Q;,S;, I;)| < oc.
Since —Cr < Q; < 7Cr from Lemma 1 and —Cr < E(s;,w,) < 7Cr, |R(Qy, I, s, w,)| < |P;|Cr. Hence,
07 (Qu, S, IV < ST Ep 11, [P|Cr < ST Ep 1, [| P |Cr < 00 since Ep,p, [| Pe]] < 00, Vi € T with x> t.
Finally, we define C := {(Q:, S, q:,s7¢, s, sPwl w?) | (Qr,S:) € O, (g1,s79,s5F,sP wl w?) €
(Qy,S;, 1)} where © :={(Q,,S,) | ~E<Q,<E, 0<8,<Cs, (S,—Cs)/(7) <Q,}. Note that C is a
convex set since © and I'(Q;, S;, I;) are polyhedral and thus convex sets. The objective function of problem
(EC.11) is a concave function on C since v/, (:,-,I;41) is jointly concave and R(Q,1,-) is concave. Since
v (Qy, S, I;) < 00, Theorem A.4 in Porteus (2002) implies that v} (Q;,S:, I;) is a concave function on . [
Proof of Theorem 1. Let n;(Q:, S, I;) = (q,s,w) denote the optimal action triplet in state (Q;, S, I;). We
first characterize the optimal energy storage action. For notational convenience, we suppress the dependency
of ZF on (Q;,S:,I;). We consider the following three scenarios:
(i) Suppose that Cr <w. If s >0, then E(s,w) = (ys+w)7T > 7Cr. But this leads to a contradiction since
E(s,w) <7Cp. Thus s <0. Since s/0+w < Cyr, S, +0(w—Cr) < S, —s. We then consider the following
problem:

max {R(Qtalt7st_zt7w)+E U:+1(Qtvzt7[t+1):|}-

(at,2t)€[~E,E]x[S¢+6(w—Cr),Cs]
Since R(Q:,I;,S; — z;,w) +E[vt*+1(qt,zt,lt+1)} is jointly concave in (g;,2;), note that (¢, z;) is a
maximizer of this problem where z; = max{Z;, S, + 6(w — Cr)}. We consider the following two cases:
e Suppose that S, +0(w—Cr) < Z;. Then zf = Z;. Since —7Cr < s/0 +w, s > —0(7Cr +w). Hence,
taking into account the capacity constraints, we obtain s = —min{Z — S;,0(7Cr +w),Cc }.
e Suppose that Z; < S, +0(w — Cr). Then z; =S, + 0(w — Cr). Recall from Lemma 3 that w =
min{ f(W;),Cr+min{Cs—S;,Cc}/0}. Thus, w < Cr+Cq /0, that is, (w — Cr) < Ce. Since s < 0,

taking into account the capacity constraints, we obtain s = —min{f(w — Cr),Cc} = —0(w — Cr).
(ii) Suppose that Cr > w and s < 0. We consider the following problem:

{R(Qta-[ta Sy —z,w) +E U:+1(Qt,2’t,—7t+1)} } .

max

(qt,2¢)€[~E,E]x[St,Cs]
Since R(Q:, I, S; — z;,w) —|—E[vt*+1(qt,zt,lt+1)] is jointly concave in (g;,z;), note that (¢, z;) is a
maximizer of this problem where z; = max{S;, Z;}. Since —7Cr < s/0 +w, s > —0(7Cr + w). Hence,

taking into account the capacity constraints, we obtain s = —min{Z; — S;,0(rCr +w),Cc} if Z; > 5,.
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(iii) Suppose that Cr > w and s > 0. We consider the following problem:

R(Qtv-[tust_ztuw)—"_E v:+1(qt7zt7-[t+1) .
]

(Qtyzt)E[rElg,}l%]X[O,St
Since R(Q:,I;,S; — z;,w) —l—E[vt*ﬂ(qt,zt,IHl)] is jointly concave in (g;,z;), note that (¢, z;) is a
maximizer of this problem where z; =min{Z7,S;}. Since vs + w < Crp, s < (Cr —w) /7. Hence, taking
into account the capacity constraints, we obtain s = min{S; — Z;, (Cr —w)/v,Cp} if Z; < S,.
We next obtain the optimal energy commitment action from the problem max, c;_g g E|v;, (g, S: —
s,]tﬂ)] Since Y;(S; — s, I;) is a maximizer of this problem, ¢ =Y;(S, —s,1;). O
Proof of Theorem 2. Let nf(Q:,S:, I;) = (q,s,w) denote the optimal action triplet in state (Q,S:, I;).
We make the following observations in four different scenarios:
(a) Suppose that (Q;,S:, W;) € Ay. Thus f(W,) > Cr + min{Cs — S;,Cc}/60. Lemma 3 implies that w =
Cr+min{Cs — S;,Cc}/0 and s = —min{Cs — S;,Cc}.
(b) Suppose that (Q;,S;, W;) € As. Thus Cr + min{Cs — S;,Cc}/0 > f(W;) > Cr. Lemma 3 implies that
w= f(W,). Note that f(W,) > Cr > Q,/7if Q; >0 from Lemma 1, and f(W;) > Cr >0>7Q; if Q, <O0.
If s >0, then E(s,w)= (ys+ f(W,))T > 7Cr. But this leads to a contradiction since E(s,w) < 7Cr.

Thus s <0, leading to decision type CS (charge and sell) or CP (charge and purchase).
(¢) Suppose that (Q,,S:, W;) € Az. Thus Cr > f(W,). Lemma 3 implies that w = f(W,).

(d) Suppose that (Q¢, S, W,) € ¥ UW¥ . Thus, letting s = —min{Cs — S,, Cc}, we have f(W,) > Q,/T —
s/6 if Q; >0, and f(W,) > 7Q, — s/0 if Q, < 0. Note that f(W;) > max{Q./7,7Q:} — s/0. If s <
s <0, then s/6 + f(W,) > s/6 + max{Q,/7,7Q,} — s/0 > max{Q,/7,7Q,}. If s >0 > s, then vs +
FWV) > max{Q,/7,7Q,} — 5/0 > max{Q,/7,7Q,}. Thus E(s, f(W,)) = min{(ys + f(W,))7,(s/0 +
FWN)T,(s/0+ f(W,))/7} > min{max{Q,, 72Q, },max{Q,/72,Q, }} = Q., leading to positive imbalance.

We now formulate the optimal state-dependent target storage levels:

(i) Suppose that (Q;,S;, W;) € A;. Thus s = —min{Cs — S,,C¢c} from scenario (a). Hence Z; = Cg.

(ii) Suppose that (Q,,S;,W;) € Ay N ¥F. Thus, s < 0 and w = f(W,) > Q,/7 from sce-
nario (b), and FE(s,w) > @, > 0 from scenario (d). We then consider the problem
MAX (g, 2 e[ B, B] x [Si,Cs] {R(pics)(zt,lt) +E U:+1(qt7zt,lt+1):| } Since R?P) (2, I,)+E vt*H(qt,zt,ItH)}
is jointly concave in (g, 2), Z; = ZP<) if 8, < 2P and Z; = S, otherwise.

(iii) Suppose that (Q;,S;, W;) € A2 N ¥7. Thus, s <0 and w = f(W,) from scenario (b), and E(s,w) > @,
from scenario (d). We now consider the following two cases:

e Suppose that s/60 +w >0. Thus 0> s > —0f(W,). We then consider the following problem:

R(piCS)(zt,It) +E [vt*+1(qt, zt,It_H)} } .

max {
(at,2t)€[—E,E]x[St,St 46 f(W¢)]
Since R)(z,,1,) +E[vt*+1(qt,zt,lt+1)} is jointly concave in (q,,z), ZF = S, +0f(W,) if S, +
0f(W,) < Z2P, zr = 27 it 5, < 2P < S, +0f(W,), and Z; = S, otherwise.
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e Suppose that 0> s/0 +w. Thus —0f(W,) > s. We then consider the following problem:

RO Bt ]

max {
(at,2¢)E[—E,E]x[St+0f(Wt),Cs]
Since RP®) (2, I,) +E [v;‘H(qt,zt, It+1)} is jointly concave in (g, z,), Z; = ZPP)if S, + 0 f(W,) <
ZPP) and ZF = S, + 0f(W,) otherwise.

We obtain the result by combining all of the above observations.

(iv) Suppose that (Q,,S;, W) € Ao N WS . Thus, f(W,) > Q,/7 >0, and s <0 and w = f(W,) from scenario
(b). We now consider the following three cases:
e Suppose that s/0 +w > Q,/7 > 0. Thus Q; < E(s,w) and 0> s > —0(f(W;) — Q,/7). We then

consider the following problem:

{R(p'cs) (20 00) + B 0731 (g, 20, It“)} }

(at,2¢) €[ B, E]x [Lglstﬁ-G(f(Wt) Qt/7)]

Since RS (2, 1)) +E[ (O qt,zt,ItH)} is jointly concave in (g, 2:), Z; = S; +0(f(W,) — Q./T)

if S, + 0(f(W,) — Qu/7) < 2P, zx = 27D if 5, < 2P < 8, + 6(f(W,) — Q,/7), and Z; = S,
otherwise.

e Suppose that Q;/7 > s/0 +w > 0. Thus Q, > E(s,w) and —0(f(W,) — Q./7) > s> —0f(W,). We

then consider the following problem:

max RMCS) (2,1 —HE[U* 2, 1 }}
(qt,Zt)e[fE,E]x[sf,+e(f<wf,>7Qt/7),st+ef(wf,)]{ (2, 1) ra (e 2 Iia)

Since RTCS)(z,,1,) +1E[U;+1(qt,zt,1t+1)} is jointly concave in (q,,z), ZF = S, +0f(W,) if S, +
Of(W,) < Z"9) zr = 29 if S, + 0(f(W,) — Qu/7) < 20 < S, + 6f(W,), and ZF = S, +
0(f(W,) —Q,/7) otherwise.

e Suppose that 0 > s/6+w. Thus @, > 0> E(s,w) and —0f(W,) > s. We then consider the following

problem:

max ]{R(nicP)(zt,It)+E[U§+1(qt,zt,ft+1)] }

(at,2¢)€[-EB,E1x[St+0f(W¢),Cs
Since R (2, I,) +E I:U:+1(qt,zt,jt+1):| is jointly concave in (g, z;), Z; = ZP S S, 4+ 0f (W) <
Z"P) and Zr = S, + 0f(W,) otherwise.

We obtain the result by combining all of the above observations.

(v) Suppose that (Q,S;,W;) € Ao N T3 . Thus, Q; <0, and s <0 and w= f(W,) > 0> 7Q, from scenario
(b). We now consider the following three cases:
e Suppose that s/6 +w > 0. Thus E(s,w) >0>Q, and 0> s > —0f(W,). We then consider the

following problem:

| {R(”ics)(zhft) +E [vfﬂ(qt, zt,IH_l)} } .

max

(a1,2¢) E[=B,E]x[S¢,S1+6 £ (W)
Since R (z,, I,) —l—E[vt*H(qt,z“ItH)} is jointly concave in (qi,z:), Z; = S + 0f(W,) if S; +
0f(W,) < Z2P | zr = 27 it 5, < 2P < S, +0f(W,), and Z; = S, otherwise.
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e Suppose that 0> s/0+w > 7Q,. Thus Q; < E(s,w) and —0f(W,) > s> —0(f(W,) —7Q,). We then

consider the following problem:

ax {R(PiCP)(zt,L)+E[U:+1((Juzt,ft+1)]}~

(qut)E[*E,E]><[St+ngI(Wt),St+9(f(Wt)*TQt)]
Since RP®) (2, I,) + E v;‘+1(qt,zt,lt+1)} is jointly concave in (q;,2), Z; =S, + 0(f(W,) — 7Q,)
it S, +0(f(W,) —7Q,) < 2P 72 = 7P it S, + 0f(W,) < ZPP) < S, + 6(f(W,) — 7Q,), and
Zr =S5,+0f(W,) otherwise.
e Suppose that 0 > 7Q, > s/6 + w. Thus Q, > E(s,w) and —0(f(W,) — 7Q,) > s. We then consider

the following problem:

max {R(niCP)(Z“]t)+E[U:+1(qt,zz,ft+1)}}-

(qt,2t) €[~ B, E]x [St+0(f (W) —7Q¢),C5s]
Since R™P) (2, I,) +E |v},1 (e, 2, It+1)] is jointly concave in (g:, 2;), Z; = 7z it 8, +0(f(W,)—
7Q,) < Z"P) and ZF = S, 4+ 0(f(W,) — 7Q,) otherwise.

We obtain the result by combining all of the above observations.
(vi) Suppose that (Q,,S;, W;) € Az N Y. Thus, w = f(W,) and E(s,w) > Q, >0 from scenarios (c)—(d).

e Suppose that s > 0. We then consider the following problem:

max {R(piDS>(2’t, It) +E U:+1(Qt7 Zt7lt+1):| } -

(qt,2t)€[—E,E]x[0,5¢]
Since RPP%)(z,, 1)) +E[v§+1(qt,zt,lt+1)] is jointly concave in (g, z), Z; =S, if S; < Zt(piDS) and
Z; = ZP®%) otherwise.

e Suppose that s < 0. We then consider the following problem:

max {R(pics)(zt,ft) +E vfﬂ(qt,zt,ItH)} }

(qt,2t) €[~ E,E]x[S¢,Cs]
Since R (z,,1,) + E v;‘H(qt,zt,ItH)] is jointly concave in (q,,z), ZF = 2P if S, < Z{PS
and Z; =S, otherwise.

We obtain the result by combining all of the above observations.

(vii) Suppose that (Q;, S;, W;) € A3sNPT. Thus, Q, <0, w= f(W,), and E(s,w) > @, from scenarios (c)—(d).

e Suppose that s > 0. We then consider the following problem:

max {R(piDS)(zt, It) +E U:+1(Qta Zt7[t+1)} } .

(qt,2¢) €[~ E,E]x[0,5¢]
Since RS (z,, I,) +E[v:+1(qt,zt,ft+1)} is jointly concave in (g, z:), Z; = S; if S; < Zt(piDS) and
Z; = ZP®%) otherwise.
e Suppose that s <0 and s/ +w > 0. Thus 0 > s > —0f(W,). We then consider the following

problem:

a RO (2, T +]E[* o H
(qf,,Zt)e[—E,Ez?x[}s{f,,sf,+ef(wf,)]{ (2, 1) Visa (G 2 Ter)

Since R (z,,I,) + E[vt*ﬂ(qt,zt,[tﬂ)} is jointly concave in (q;,z2:), Z; =S, + 0f(W,) if S, +
0f(W,) < Z2PD | zr =27 it 5, < 2P < S, +0f(W,), and Z; = S, otherwise.
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e Suppose that s <0 and 0> s/6 +w. Thus —0f(W,) > s. We then consider the following problem:

{R(picp)(zt, L) +E [v;_l (e, 21, I”Fl)} } '

max

(at,20) €[~ B, E]x[S¢+6f(W¢),C5s]
Since R (2, I,) +E [v;;l(qt,zt,ltﬂ)} is jointly concave in (g, 2,), ZF = Z"F) if S, +6f(W,) <
ZPP) and Zr = S, + 0f(W,) otherwise.

We obtain the result by combining all of the above observations.

(viii) Suppose that (Q,,S;,W,) € AsN¥. Thus, f(W,) > Q,/7 >0, and w = f(W,) from scenario (c).

e Suppose that s >0. Thus Q, < E(s,w). We then consider the following problem:

max {R(piDs)(zt; L)+ E|v; (g Zt7It+1):| } .

(qt.2¢) €[ E,E]x[0,5¢]
Since R®P%)(z,, I,) +E[v§+1(qt,zt,lt+1)} is jointly concave in (q;,z2;), Z; =S, if S; < Zt(piDS) and
Z; = ZP°%) otherwise.
e Suppose that s <0 and s/6+w > Q,/7>0. Thus Q, < E(s,w) and 0 > s > —0(f(W,) —Q,/7). We

then consider the following problem:

{R(piCS)(zt, L) +E|v; (. zt,ItH)} } .

(fhvzt)e[—E,E]X[ént%iié?(f(Wt)—Qt/T)]
Since R (2, I,) + E [v;‘H(qt, ZtyLH—l)] is jointly concave in (g, 2:), Z; = S; +0(f(W,) — Q./T)
if S, + 0(f(W,) — Q./7) < 2P, 7x = 27D if 5, < 2P < 8, + 6(f(W,) — Q./7), and Z; = S,
otherwise.
e Suppose that s <0 and Q;/7 > s/0 +w > 0. Thus Q, > E(s,w) and —0(f(W,) — Q,/7) > s >
—0f(W,). We then consider the following problem:

max RMCS) (2, T —HE[U* 2, 1 }}
(qf,,z,,)e[—E,E]x[sf,+9(f<wf,>7Qt/7),sf,+ef(wf,)]{ (2, 1) o1 (0 2 Ter)

Since RS (z,, 1,) +E[vt*+1(qt,z“]t+1)] is jointly concave in (g,2:), Z; = S; + 0f(W,) if S, +
0f(Wy) < 2", Zp = 2" i S, + 0(f(W,) — Qu/7) < Z{" < 8, + 0f(W,), and Z; = S, +
0(f(W,) —Q,/7) otherwise.

e Suppose that s <0 and 0> s/0 +w. Thus Q; > 0> E(s,w) and —0f(W;) > s. We then consider

the following problem:

{R(niCP) (Ztalt) +E [U:+1(Qtyztajt+1):| } .

max

(a1:2¢) €[~ B, E]x[St+0f(W:),Cs]
Since R"P)(z,,I,)+E [U:-H((Jt,zt, It+1):| is jointly concave in (g, 2¢), Z; = Z{" 7 it S, HOFW,) <
Zt(niCP) and Z; = S, + 0 f(W,) otherwise.

We obtain the result by combining all of the above observations.

(ix) Suppose that (Qy, S, W) € AsNU5. Thus, f(W;) > 0> 7Q;, and w= f(W;) from scenario (c).
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e Suppose that s >0. Thus Q; <0< E(s,w). We then consider the following problem:

max {R@iDS)(zt,It)—i—E vt*+1(qt,zt,lt+1)}}.

(qt,20) €[~ E,E]x[0,5¢]
Since R0 (z,, I,) —&—E[vfﬂ(qt,zt,ftﬂ)} is jointly concave in (g, 2), Zf = S, if S, < Z"° and
Z; = ZP®%) otherwise.
e Suppose that s <0 and s/0+w > 0. Thus @, <0< E(s,w) and 0 > s > —0 f(W;). We then consider

the following problem:

a RO (2, T +]E[* o H
<qt,2t)e[fE,EI?x[}s{t,st+ef(wf,>]{ (2, 1) Vrar (@ 200 [i41)

Since R (z,, I,) + E[vt*ﬂ(qt,zhltﬂ)} is jointly concave in (q;,z;), Z; = S, + 0f(W,) if S, +
Of(W,) < 2P, zx = 7P it §, < 2P < S, + 0f(W,), and Z; = S, otherwise.
e Suppose that s <0and 0> s/0+w > 7Q,. Thus Q; < E(s,w) and —0f(W,) > s > —=0(f(W,) —7Q,).

We then consider the following problem:

max {R(Picp)(Zt,It) +E [U;“+1(qt,zt, It+1)} } .

(at,20) €[~ B, E] X [Ss 40 f (W2),S:+6(f (W) —7Q¢)]
Since RP®) (2, I,) + E vt*ﬂ(qt,zt,ltﬂ)} is jointly concave in (q;,z2:), ZF =S, + 0(f(W,) — 7Q.)
if S, +0(f(W,) —7Q,) < ZPP Zr = 2P it S, + 0f(W,) < ZPP) < 8, + 6(f(W,) — 7Q,), and
Zr =S,4+0f(W,) otherwise.
e Suppose that s <0 and 0> 7Q; > s/ +w. Thus Q; > E(s,w) and —0(f(W;) —7Q;) > s. We then

consider the following problem:

max RMP) (2, T —|—E[v* 2, 1 }}
(qt,Zt)e[fE,E]x[st+9(f(wf,)ert),cs]{ (2, 1) ra (e 2 Toa)

Since RP) (2, I,) + E |v7, 1 (v, 2t It+1)] is jointly concave in (q;,2), Z: = Z"F) if S, +0(f(W,) —
7Q.) < 2P and Z; = S, +0(f(W,) — 7Q,) otherwise.

We obtain the result by combining all of the above observations.
(x) Suppose that (Qy, Sy, W;) € AsN V7. Thus, Q, > 7f(W,) >0, and w= f(W,) from scenario (c).

e Suppose that s >0 and ys +w > @Q,/7. Thus Q, < E(s,w) and s > (Q,/7 — f(W;))/y. We then

consider the following problem:

max REDS) (5 T JrIE[v* 2 1 ]}
(qt,z»e[fE,EJx[o,stf@t/fff(wt))/w]{ (2, 1) o1 (A 2 L)

Since RPPS) (2, I,) +E [v;_l(qt, zt,IH_l)} is jointly concave in (g, 2;), Z; =S, — (Q./7— f(W})) /v
if S, — (Qu/7 — f(W) /v < ZPP) and Z; = 2™ otherwise.
e Suppose that s >0 and ys+w < Q,/7. Thus Q, > F(s,w) and (Q,/7 — f(W;))/~ > s >0. We then

consider the following problem:

{R("iDS)(zt, I)+E [v:+1(qt,zt, It_H)} } )

_ max

(9t,2t)€[—E,E1x[St—(Qt/7—F(W¢))/~,St]
Since RMPS) (2, I,) + E I:U:+1(qt7zt,jt+1):| is jointly concave in (¢, 2;), Z; =S, if S; < Zmbs) Zr =
ZPS) ¢ g, (Qi/7— f(W)) /vy < 7P g, and Zr=8,—(Q./T— f(W,))/~ otherwise.



ecl0 e-companion to Optimal Hour-Ahead Commitment and Storage Decisions of Wind Power Producers

e Suppose that s <0 and s/0 +w > 0. Thus, Q; > (s/0 + f(W,))T = E(s,w) since f(W;) < Q,/7, and
0>s>—0f(W,). We then consider the following problem:

max ]{R(nics)(2t7.[t)+E[U:+1(qtazt7]t+1):|}‘

(at,2¢0) €[~ B, E]x[St, St +0f (W)
Since RMS)(z,,I,) + E[vfﬂ(qt,zt,lﬁl)} is jointly concave in (q;,2;), Z;7 = S, + 0f(W,) if S, +
0f(W,) <z, zr = 2" it 8, < ") < S, +0f(W,), and Z; = S, otherwise.
e Suppose that s <0 and 0> s/6 +w. Thus Q; > 0> E(s,w) and —0f(W,) > s. We then consider

the following problem:

max ]{R(nicP)(zt,It)+E[U:+1(qt,zt,ft+1)] }

(at,2t) €[~ E,E]x[S¢+6f(W¢),Cs
Since RMP) (2, I,) + [v;‘+1(qt,zt, It_H)} is jointly concave in (g:, 2:), Z; = ZMP) it 8, +O0f(W,) <
Z"P) and Zr = S, + 0 (W,) otherwise.
We obtain the result by combining all of the above observations. [
Proof of Proposition 2. Let u}(q;,2)=E [vjﬂ(qt,zt,]t“)} .
(a) We show that Z"” < ZPP). By definition of Z!) and Y,'*, the following inequalities hold.
w (Yt(niCP)’Zt(niCP)) _ KnPtZt("iCP)/(HT) > ()/t(piCP), Zt(piCP)) _ KnPtZt(picp)/(97_)7
ul (}/t(piCP)’ Zt(piCP)) _ KthZt(piCP)/(eT) > ()/t(niCP), Zt(niCP)) _ KthZt(niCP)/(HT)'
The summation of the above inequalities implies (K, — K,.)P,Z"" /(67) > (K, — K,.))P,Z®" /(67). Since
6>0,7>0,and K,, > K, ZMP) < ZPP) Gimilarly, we can show that Z") < 2P and z("PS) < Z(#PS),
(b) We show that Z{") < Z{"®) < z{"P%). By definition of Z) and Y, the following inequalities hold.
wr (Y;(niCP), Zt(nicp)> _ KnPtZt("iCP)/(GT) > (th(niCS), Zt(niCS)) _ KnPtZt(niCS)/(aT)’
w ()/t(niCS)’ Zt(niCS)> B TKnPtZt(niCS)/e > (th(niCP)7 Zt(niCP)) _ TKnPtZt("iCP)/G.

The summation of the above inequalities implies K, P,(t — 1/7) 2" /0 > K, P,(t — 1/7)Z{" /6. Since
0>0,1>7>0, and K,, >0, 2" < z") By definition of Z") and Y,’, the following inequalities hold.
u (Yt(niCS), Zt(niCS)) _ TKnPtZt(niCS)/o > (Yt(niDS)’ Zt(niDS)> . TKnPtZt(niDS)/o’

u (Y;(niDS)7 aniDS)) — K, P, Zt(niDS) > (Yt(niCS)7 Zt(niCS)> —rK,P, Zt(niCS).

The summation of the above inequalities implies 7K, P,(y—1/6) Z" > 7K, P,(y—1/6) Z{"® . Since 7 > 0,
v<1,1>60>0, and K,, >0, Z,f"ics) < Zt(niDS). Similarly, we can show that Zt(picp) < Zt(pics) < Zt(piDS). O

The proof of Corollary 1 is available upon request from the authors.
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