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Renewable energy generators often rely on their battery deployments to meet their commitments in electricity

markets. We consider the joint energy commitment and storage problem for a wind farm paired with a

battery. The power producer decides, in each hour of a finite planning horizon, how much energy to commit

to dispatching or purchasing for the next hour, how much wind energy to generate, and how much energy

to charge or discharge. The power producer pays a penalty cost if they do not fully meet their commitment.

Using a Markov decision process model under uncertainties in electricity price (assumed to be positive) and

wind speed, we first prove the optimality of a state-dependent threshold policy for the power producer’s

problem. This policy partitions the state space into several disjoint domains, each associated with a different

action type, making it optimal to bring storage and commitment levels to different threshold pairs in each

domain. We then employ our structural results to develop a heuristic solution procedure in a more general

setting where the electricity price can also be negative. Numerical results show the high efficiency and

scalability of this procedure. It provides solutions with an average deviation of only 0.3% from optimality

and achieves a speedup of two to three orders of magnitude compared to the standard dynamic programming

algorithm, reducing computation times from several hours to just a few minutes.
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1. Introduction

1.1. Motivation and Overview of the Problem

Technological advancements, government support, and cost reductions have led to rapid growth in

the use of renewable energy sources, such as wind and solar (Beyene and Tsao 2024). Renewable

energy sources are projected to account for over one-third of global electricity generation soon,

surpassing coal for the first time (EIA 2024a). While these sources contribute more to the overall

energy supply, renewable power producers participate in electricity markets and make advance

commitment decisions for energy delivery and purchase. Making these commitment decisions effec-

tively is challenging due to the inherent intermittency of renewable energy sources, increasingly
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volatile electricity prices, and penalty costs arising from energy imbalances – situations where the

actual energy generated differs from the committed amount.

One of the most promising solutions to address these challenges is the integration of renewable

energy generation with energy storage, particularly through batteries (EIA 2024b). Battery storage

helps stabilize renewable energy supply by storing excess energy during periods of overproduction

and discharging it during shortages. Batteries also enable energy arbitrage, allowing producers to

store electricity when prices are low and sell it when prices are high, further enhancing profitabil-

ity. 1 Coupled with technological advancements and supportive policies, these factors have driven

substantial growth in battery storage in recent years. For example, in the U.S., battery storage

additions surged by 64% in 2024, making it the second-largest source of new capacity after renew-

ables (Deloitte 2024). Policymakers are also refining regulatory frameworks to accelerate battery

deployment (e.g., the U.S. Federal Energy Regulatory Commission’s updated wholesale market

rules, EPRI 2024, and the Department of Energy’s grid energy storage strategy, DOE 2024). As

these policy-driven efforts gain momentum, renewable power producers are at the forefront of a

rapidly evolving market landscape, where advance commitment decisions for energy supply and

purchase are becoming increasingly critical. In this context, the joint optimization of renewable

energy generation and storage is essential for achieving both operational and financial objectives.

We study the energy commitment, generation, and storage problem of a wind power producer

who owns a battery and participates as a price-taker (i.e., a producer who does not have the power

to affect market prices) in a spot market entailing hourly commitments and settlements. In each

time period, the producer decides how much energy to commit for sale or purchase in the next

time period, how much wind energy to generate, and how much energy to charge or discharge.

The battery installed helps mitigate energy imbalances caused by fluctuations in wind speed, while

also enabling price arbitrage over time in the same market. The producer is subject to market

regulatory constraints and settlement penalties for imbalances, defined as deviations between the

real-time delivered energy (which includes both wind generation and battery operations) and the

previously committed amount. A positive imbalance occurs when the delivered amount exceeds the

commitment, while a negative imbalance reflects a shortfall. The transmission line and battery stor-

age capacities limit the producer’s ability to utilize all available wind energy. As a result, physical

curtailment may arise endogenously when wind potential exceeds the combined system capacity,

1 Although the high capital cost of procuring battery storage and its degradation over time are critical considerations
for investment planning, these factors are exogenous to our study. We focus on short-term operational scheduling,
assuming a battery of fixed size is already installed. In this context, battery storage is viewed primarily as an
operational tool for managing price volatility and market exposure.
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which changes dynamically with the battery storage level. We model this problem as a Markov

decision process (MDP) by accounting for the electricity-price and wind-speed uncertainties.

1.2. Related Work

Our study contributes to two research streams in the energy literature: The first stream focuses on

the energy commitment problem of renewable power generators in electricity markets (e.g., Kim

and Powell 2011, Löhndorf et al. 2013, Jiang and Powell 2015, Gönsch and Hassler 2016, He et al.

2016, Hassler 2017, Khaloie et al. 2020, Kim et al. 2020, Zhang et al. 2020, Finnah and Gönsch

2021, Mansouri and Sioshansi 2022, Jeong et al. 2023, Karakoyun et al. 2023, and Chen et al. 2024).

The second stream studies the joint optimization of renewable power generation and energy storage

(e.g., Harsha and Dahleh 2014, Grillo et al. 2015, Tang et al. 2015, Zhou et al. 2019, Avci et al.

2021, Ma et al. 2022, Tsao and Vu 2023, Peng et al. 2024, and Tsao et al. 2025). Given the extensive

body of work in these areas, we refer the reader to Parker et al. (2019) for a comprehensive survey

of the related literature. We will review the most relevant papers that employ MDP formulations.

The problem setting we consider is similar to that explored in Karakoyun et al. (2023), which

falls within the first research stream. While their work provides valuable insights into the complex

interplay between battery deployments, energy imbalances, and penalty parameters, it presents

neither optimal policy structure nor efficient solution algorithms. Our work complements theirs by

offering a theoretical explanation of the complex system dynamics involved in optimizing energy

commitments for intermittent generation assets. Specifically, we analytically derive the optimal

policy structure for the joint optimization of energy commitment, generation, and storage decisions

within a multidimensional state space. Furthermore, we employ this policy structure to develop

computationally efficient solution algorithms. Karakoyun et al. (2023) solve their problem instances

with a standard dynamic programming (DP) algorithm, which is difficult to implement in practice

due to its long solution times (several hours). However, our solution methods accounting for the

structural results in this paper yield solutions in only a few minutes.

Another closely related paper in the first research stream is Kim and Powell (2011), which

derives a closed-form solution for the optimal hour-ahead commitment decision of a wind power

producer, assuming that wind speed follows a uniform distribution. Their model focuses solely on

commitment decisions, where the power producer determines how much energy to sell in advance.

Our study extends this work in several key ways. First, we consider a more general model that

incorporates energy generation and storage decisions. Second, our model takes into account power

capacity constraints and transmission line limitations. Third, while the producer in their model
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can only commit to selling and cannot induce positive imbalances, our model allows the producer

to buy energy and induce both positive and negative imbalances. Finally, our analysis does not

rely on any specific probability distribution for wind speed.

The most closely related papers in the second research stream are Zhou et al. (2019) and Avci

et al. (2021). Zhou et al. (2019) consider a wind farm co-located with an industrial battery, includ-

ing the battery storage level as the only endogenous state variable in their MDP. Avci et al. (2021)

consider a wind farm co-located with a pumped hydro energy storage facility consisting of two

connected reservoirs, including the water levels in the upper and lower reservoirs as the two endoge-

nous state variables in their MDP. Our study extends these two papers in several ways. First, both

Zhou et al. (2019) and Avci et al. (2021) focus on electricity markets that are free of advance

commitment decisions, whereas our model explicitly incorporates these decisions. This increases

the complexity of the problem, as we must treat the commitment decision from the previous period

as an additional endogenous state variable. Second, in terms of optimal policy characterization, the

above two papers show concavity of the optimal value function in a single dimension (i.e., storage

level), while we prove joint concavity in two dimensions (i.e., storage and commitment levels).

Therefore, their optimal policy structures involve only one target level (for the battery storage

level in Zhou et al. 2019 and for the upper-reservoir water level in Avci et al. 2021), whereas ours

involves two target levels for storage and commitment decisions that must be jointly optimized.

1.3. Contributions of Our Study

We contribute to the energy literature in two different ways: (i) We characterize the optimal

policy structure for the hourly energy commitment, generation, and storage problem. Our struc-

tural insights not only deepen market regulators’ understanding of participant behaviors under

uncertainty but also aid wind power producers in developing smarter and more practical heuris-

tic solution methods. (ii) Building on our structural results, we design computationally efficient

heuristic algorithms capable of delivering high-quality solutions.

In our structural analysis, assuming positive electricity prices, we first formulate the optimal

amount of wind energy that should be generated in any given period as a function of the state

variables in that period. We then prove the joint concavity of the optimal value function in storage

and commitment levels. This result allows us to show that the optimal storage and commitment

policy follows a state-dependent threshold policy. The optimal decisions in each period can be

guided by thresholds that vary based on the state variables, which can be reduced to exogenous

state variables through proper state-space partitioning. Specifically, the state space in each period
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can be partitioned into disjoint domains that correspond to the optimal decisions of ‘positive

imbalance’ and ‘negative imbalance’ as well as to the optimal decisions of ‘charge and purchase,’

‘charge and sell,’ and ‘discharge and sell.’ It is then optimal to bring the storage and commitment

levels to a different exogenous-state-dependent threshold pair in each domain.

We construct a heuristic solution procedure that employs our structural results to reduce the

computational burden of the standard DP algorithm, while also accounting for the possibility of

negative electricity prices over long planning horizons. In this procedure, we develop a backward

induction algorithm that calculates the state-dependent threshold pairs for the storage and com-

mitment levels in each period. While the storage and commitment actions in positive-price states

are determined by these threshold pairs, those actions in negative-price states are obtained from

the myopically optimal solution. We call this solution method HC (Heuristic via Complete state

space). We also consider a variant of HC that uses the output of HC executed in a simpler setting

in which we ignore the spike component of the price to reduce the state space. We call this variant

HR (Heuristic via Reduced state space).

In order to evaluate the use of our solution methods in the general problem, we have com-

piled realistic instances by incorporating the electricity-price and wind-speed time-series models of

Karakoyun et al. (2023) into the random evolution of the exogenous state variables in our MDP.

HC yields the optimal solution in all instances by up to 69 times faster than the standard DP

algorithm. HR yields near-optimal solutions 8 times faster than HC. The solution time of HR is less

than one minute in each instance, while the standard DP algorithm has an average solution time

of 237.6 minutes. All these findings highlight the practical importance of our structural analysis.

1.4. Organization of the Paper

The remainder of this paper proceeds as follows. Section 2 formulates the problem. Section 3 estab-

lishes the optimal policy structure. Section 4 illustrates the optimal policy structure under perfect

efficiency. Section 5 offers the heuristic solution methods based on our structural results. Section

6 presents the numerical results for our heuristic methods and alternative solution approaches.

Section 7 concludes. Proofs of the analytical results are contained in an online appendix.

2. Problem Formulation

We consider an energy system that was studied in several recent papers (e.g., Zhou et al. 2019,

Bhattacharjee et al. 2020, and Karakoyun et al. 2023). In this system, the energy generated in the

wind power plant and/or purchased from the market can be utilized to charge the battery. The
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Table 1 Notations used in the MDP model.

Parameters Descriptions

CS Battery’s energy capacity (MWh).
CD Maximum energy that can be discharged from the battery during a time period (MWh).
CC Maximum energy that can be charged into the battery during a time period (MWh).
CT Maximum energy that can be transmitted during a time period (MWh).
γ Electricity conversion efficiency in the generation mode of the battery (γ ∈ (0,1]).
θ Electricity conversion efficiency in the storage mode of the battery (θ ∈ (0,1]).
τ Electricity transmission efficiency (τ ∈ (0,1]).
Kp Positive imbalance price parameter in positive-price states (0≤Kp < 1).
Kn Negative imbalance price parameter in positive-price states (1<Kn).
K−

p Positive imbalance price parameter in negative-price states (1<K−
p ).

K−
n Negative imbalance price parameter in negative-price states (0≤K−

n < 1).

State variables

St Accumulated amount of energy in the battery at the beginning of period t, i.e., the
storage level (St ∈ [0,CS ]).

Qt Amount of energy that the producer should sell in period t if Qt ≥ 0 and should buy in
period t if Qt < 0, as per the producer’s commitment in period t−1, i.e., the commitment
level (Qt ∈R).

Pt Electricity price in period t (Pt ∈R).
Wt Wind speed in period t (Wt ∈R+).
It Exogenous state of the system (It := (Pκ,Wκ)κ≤t with EPκ|It [|Pκ|]<∞ for κ≥ t).
f(Wt) Maximum amount of energy that can be generated in the wind power plant in period t.

Decision variables

qt Amount of energy to commit to selling or purchasing in period t+1 (qt ∈R).
wt Amount of energy to generate in the wind farm in period t (wt ∈R+).
st Amount of energy to generate or store in the battery in period t (st ∈R).

power producer participates as a price-taker in a spot market that mandates hour-ahead commit-

ments and hourly settlements.2 The future electricity prices and wind availability are uncertain.

The producer decides, in each hour, how much energy to generate in the wind power plant, how

much energy to charge into or discharge from the battery, and how much energy to commit to

selling to or buying from the market in the next hour. Since a similar setting was also studied

in Karakoyun et al. (2023), our presentation and notation below closely follow the corresponding

material in Karakoyun et al. (2023). The notations used in our model are listed in Table 1.

The power producer seeks to optimize its energy commitment, generation, and storage decisions

over T periods (hours). T := {1,2, . . . , T} is the set of periods. We consider an MDP in which the

storage and commitment levels are endogenous state variables while the electricity price and wind

speed are exogenous state variables. In any period t ∈ T , upon observing the state variables (Pt,

Qt, St, and Wt), the producer determines the amount of energy to commit to selling or purchasing

in period t+ 1, qt ∈ R; the amount of energy to generate in the wind farm in period t, wt ∈ R+;

and the amount of energy to generate or store in the battery in period t, st ∈ R. The battery is

2 The price-taking assumption is benign if the system makes a very limited contribution to the overall energy supply
in the market. This assumption was made in many related papers (e.g., Kim and Powell 2011, Ding et al. 2015,
Gönsch and Hassler 2016, Hassler 2017, Dı́az et al. 2019, and Karakoyun et al. 2023).
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Figure 1 Sequence of events in each period.

periodt t+1


Electricity price Pt

Commitment from the previous period Qt

Storage level St

Wind speed Wt

 Commitment for the next period qt
Storage amount st
Wind generation wt

R(Qt, It, st,wt)

State variables

Decision variables

charged if st < 0 and discharged if st ≥ 0. See Figure 1 for an illustration of the sequence of events.

The state variables St and Qt evolve over time as follows: St+1 = St− st and Qt = qt−1.

The energy storage and generation decisions fall into one of the following three types: (i) Suppose

that the battery is discharged (st ≥ 0). The energy generated from the battery and wind farm is

sold in this case. We call this decision type DS (the initials of ‘discharge’ and ‘sell’). (ii) Suppose

that the battery is charged (st < 0) and the generated wind energy is sufficient to charge the

battery (st/θ≥−wt). The excess wind energy is sold in this case. We call this decision type CS (the

initials of ‘charge’ and ‘sell’). (iii) Suppose that the battery is charged (st < 0) and the generated

wind energy is not sufficient to charge the battery (st/θ <−wt). The required additional energy is

purchased in this case. We call this decision type CP (the initials of ‘charge’ and ‘purchase’). The

actual amount of energy sold or purchased in period t is

E(st,wt) :=


(γst +wt)τ if st ≥ 0,

(st/θ+wt)τ if −wt ≤ st/θ < 0,

(st/θ+wt)/τ if st/θ <−wt ≤ 0.

The energy is sold if E(st,wt) ≥ 0 and purchased otherwise. Note E(st,wt) = min{(γst +

wt)τ, (st/θ+wt)τ, (st/θ+wt)/τ}. Since the minimum of affine functions is concave, E(·, ·) is concave.

Let U(Qt, St, It) denote the set of action triplets (qt, st,wt) that are admissible in state (Qt, St, It).

Any action triplet in U(Qt, St, It) satisfies the following conditions: 0 ≤ wt ≤ f(Wt) (due to the

wind-farm power capacity), −min{CS − St,CC} ≤ st ≤min{St,CD} (due to the battery’s energy

and power capacities), and −CT ≤E(st,wt)≤ τCT (due to the transmission power capacity).

Deviations from contractual commitments can occur due to participants’ forecast errors and/or

profit-maximization behavior. Although such deviations are closely monitored by the market reg-

ulators, some occurrences still take place (Bergler et al. 2017 and Eicke et al. 2021). The market
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operators impose penalty payments to discourage deviations from scheduled commitments. We

consider a general model that is flexible enough to reflect such market realities and participant

behavior by incorporating the penalty costs. These penalties vary depending on the magnitude and

direction of the imbalance as well as market regulations and conditions.

The energy storage and generation decisions can be grouped into two types based on the sign

of deviations: (i) Suppose that the amount of energy supplied to (or withdrawn from) the market

in real-time is greater (or lower) than the commitment level (i.e., E(st,wt)>Qt). This leads to a

‘positive imbalance.’ We call this decision type pi. (ii) Suppose that the amount of energy supplied

to (or withdrawn from) the market in real-time is lower (or greater) than the commitment level (i.e.,

E(st,wt)<Qt). This leads to a ‘negative imbalance.’ We call this decision type ni. The producer

is settled with a penalized price in both cases. Similar settings were studied in many papers (e.g.,

Kim and Powell 2011, Jiang and Powell 2015, Hassler 2017, Sunar and Birge 2019, and Finnah

and Gönsch 2021). The payoff in period t can be expressed as a function of state variables Qt and

It as well as actions st and wt:

R(Qt, It, st,wt) =



QtPt +KpPt(E(st,wt)−Qt) if Pt ≥ 0 and Qt <E(st,wt) (pi),

QtPt−KnPt(Qt−E(st,wt)) if Pt ≥ 0 and Qt ≥E(st,wt) (ni),

QtPt +K−
p Pt(E(st,wt)−Qt) if Pt < 0 and Qt <E(st,wt) (pi),

QtPt−K−
n Pt(Qt−E(st,wt)) if Pt < 0 and Qt ≥E(st,wt) (ni),

where KpPt and KnPt (or K
−
p Pt and K−

n Pt) are the imbalance prices in positive-price (or negative-

price) states in the cases of pi and ni, respectively. The imbalance parameters are chosen so that

0≤Kp < 1<Kn and 0≤K−
n < 1<K−

p . While the first term of the payoff function is the instant

revenue QtPt, the second term has the following implications: The producer in the case of pi receives

KpPt(E(st,wt)−Qt) if the price is positive or pays −K−
p Pt(E(st,wt)−Qt) otherwise, by selling

the excess amount at an imbalance price lower than Pt. Likewise, the producer in the case of ni

pays KnPt(Qt−E(st,wt)) if the price is positive or receives −K−
n Pt(Qt−E(st,wt)) otherwise, by

purchasing the excess amount at an imbalance price higher than Pt.
3

A control policy π specifies the sequence of decision rules (ηπ
t (Q

π
t , S

π
t , It))t∈T , where Qπ

t and

Sπ
t are the random state variables implied by policy π, ∀t ∈ T \{1}, and ηπ

t (Q
π
t , S

π
t , It) :=

(qπt (Q
π
t , S

π
t , It), s

π
t (Q

π
t , S

π
t , It),w

π
t (Q

π
t , S

π
t , It)). We define Π as the set of all admissible control poli-

cies. The optimal expected total cash flow over the finite horizon, conditional on the initial state

(Q1, S1, I1), can be written as

max
π∈Π

E

[∑
t∈T

R(Qπ
t , It, s

π
t (Q

π
t , S

π
t , It),w

π
t (Q

π
t , S

π
t , It))

∣∣∣∣Q1, S1, I1

]
.

3 Similar pricing mechanisms appear in practice. In Spain, for instance, the imbalance prices in the cases of pi and ni
are (1−K)Pt and (1+K)Pt, respectively, where 0<K ≤ 1 (e.g., Dı́az et al. 2019 and Shinde et al. 2020).
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For each period t ∈ T and each state (Qt, St, It), the optimal value function v∗t (Qt, St, It) can be

calculated with the following DP recursion:

v∗t (Qt, St, It) = max
(qt,st,wt)∈U(Qt,St,It)

{
R(Qt, It, st,wt)+EIt+1|It

[
v∗t+1(qt, St− st, It+1)

]}
where vT (QT , ST , IT ) = 0. Note that v∗1(Q1, S1, I1) is the optimal expected total cash flow for the

initial state (Q1, S1, I1) over the finite horizon.

3. Structural Analysis

In this section, we establish several structural properties of our optimal value function and use

these properties to characterize the optimal policy structure. We first introduce several bounds on

the optimal energy commitment decision.

Lemma 1. Without loss of optimality, the commitment levels can be constrained as

follows: −min{(CS − (St− st))/(θτ),
¯
E} ≤ qt ≤ min

{
τ(γ(St− st)+ f̄), Ē

}
, ∀t ≥ 1, and

−min{(CS −St)/(θτ),
¯
E} ≤ Qt ≤ min

{
τ(γSt + f̄), Ē

}
, ∀t > 1, where

¯
E := min{CC/(θτ),CT},

Ē := τ min
{
γCD + f̄,CT

}
, and f̄ :=maxt∈T {f(Wt)}.

Lemma 1 states that the optimal amount of energy to be committed to selling/buying never exceeds

the maximum amount of energy that can be sold/purchased in the next period.

We now assume that the electricity price is always nonnegative:

Assumption 1. Pt ≥ 0, ∀t∈ T .

Assumption 1 implies that R(Qt, It, st,wt) = min{QtPt + KpPt(E(st,wt) − Qt),QtPt +

KnPt(E(st,wt)−Qt)}. Since the minimum of affine functions is concave, R(Qt, It, st,wt) is jointly

concave in Qt and E(st,wt). Since E(st,wt) is jointly concave and increasing in st and wt,

R(Qt, It, st,wt) is jointly concave and increasing in st and wt as well. Under Assumption 1, we

establish the following structural property of our optimal value function.

Lemma 2. Under Assumption 1, v∗t (Qt, St, It)≤ v∗t (Qt, St +α, It) where α> 0, ∀t∈ T .

Lemma 2 states that the system becomes more profitable as the amount of energy accumulated in

the battery grows. This is because if the stored energy is higher, the producer can sell more energy

from the battery by charging it less in the long run. Using Lemma 2, we formulate the optimal

amount of wind energy that should be generated in any period.

Lemma 3. Under Assumption 1, w∗
t (Qt, St, It) =min{f(Wt),CT +min{CS−St,CC}/θ}. Moreover,

if w∗
t (Qt, St, It) =CT +min{CS −St,CC}/θ, then s∗t (Qt, St, It) =−min{CS −St,CC}.
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Lemma 3 states that it is optimal to generate as much wind energy as possible. If the wind energy

potential is large enough, it is optimal to sell and store as much energy as possible. The curtailed

amount of wind energy is given by f(Wt)− (CT +min{CS − St,CC}/θ) if w∗
t (Qt, St, It)< f(Wt).

This lemma allows us to restrict our optimal policy characterization to the energy commitment

and storage decisions.

Using Lemma 1 and Assumption 1, we also prove the concavity of our optimal value function.

Proposition 1. Under Assumption 1, v∗t (Qt, St, It) is jointly concave in (Qt, St), ∀t∈ T .

The joint concavity of the value function implies that increasing the commitment level exhibits

diminishing returns. A small commitment level raises the risk of missing the opportunity to sell

more energy at the market price, while a large commitment level increases the risk of incurring

penalty costs due to the difficulty of meeting the commitment. Moreover, a high commitment level

may prompt the producer to consume more of the available energy in the current period, potentially

limiting energy availability in the future. Similarly, the joint concavity implies that increasing

the storage level also exhibits diminishing returns. As the battery approaches its capacity, each

additional unit of stored energy provides a smaller benefit in terms of future operational flexibility.

An important implication of Proposition 1 is that the optimal energy commitment and storage

policy can be characterized as following a threshold policy. Specifically, we introduce the optimal

state-dependent target levels for commitment and storage decisions, which we respectively denote

by Y ∗
t (Qt, St, It) and Z∗

t (Qt, St, It), in an unconstrained problem free of certain capacity limits. We

implement these target levels into the optimal policy structure in the original constrained problem:

(Y ∗
t (Qt, St, It),Z

∗
t (Qt, St, It)) := argmax

(qt,zt)∈[−
¯
E,Ē]×[0,CS ]

{
R(Qt, It, St− zt,wt)+E

[
v∗t+1(qt, zt, It+1)

]}
,

(1)

where zt := St−st is the storage level at the end of period t if the action st is taken in period t. Since

Z∗
t (Qt, St, It) may be inaccessible when the omitted capacity limits are reconsidered, the optimal

storage level at the end of period t may differ from Z∗
t (Qt, St, It), implying that Y ∗

t (Qt, St, It) may

no longer be optimal at this storage level. Hence, we also introduce the optimal state-dependent

target commitment level after the storage decision is made in the constrained problem:

Yt(St+1, It) := argmax
qt∈[−

¯
E,Ē]

{
E
[
v∗t+1(qt, St+1, It+1)

]}
. (2)

Note that Yt(Z
∗
t (Qt, St, It), It) = Y ∗

t (Qt, St, It).

Using Lemma 3 and Proposition 1, we now characterize the optimal energy storage and com-

mitment actions.
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Theorem 1. Under Assumption 1, letting w = w∗
t (Qt, St, It) and Z = Z∗

t (Qt, St, It), the optimal

energy storage action is

s∗t (Qt, St, It) =


−min{Z −St, θ(τCT +w),CC} if CT ≤w and St + θ(w−CT )<Z,

−θ(w−CT ) if CT ≤w and Z ≤ St + θ(w−CT ),

−min{Z −St, θ(τCT +w),CC} if CT >w and St <Z,

min{St−Z, (CT −w)/γ,CD} if CT >w and Z ≤ St.

The optimal energy commitment action is q∗t (Qt, St, It) = Yt(St− s∗t (Qt, St, It), It).

The maximization problem in (1) should be solved for each state to calculate the optimal control

policy. This calculation method, however, provides no computational benefit compared to the stan-

dard DP algorithm. In order to overcome this drawback, we consider an alternative formulation

that restricts the optimal target levels to depend only on exogenous state variable It and decision

type ν. We denote these target levels for the commitment and storage actions by Y
(ν)
t (It) and

Z
(ν)
t (It), respectively. We consider a total of six decision types: the actions of ‘charge’ and ‘pur-

chase’ leading to positive imbalance (piCP) and negative imbalance (niCP), the actions of ‘charge’

and ‘sell’ leading to positive imbalance (piCS) and negative imbalance (niCS), and the actions

of ‘discharge’ and ‘sell’ leading to positive imbalance (piDS) and negative imbalance (niDS). For

ν ∈ {niCP,niCS,niDS,piCP,piCS,piDS},(
Y

(ν)
t (It),Z

(ν)
t (It)

)
:= argmax

(qt,zt)∈[−
¯
E,Ē]×[0,CS ]

{
R(ν)(zt, It)+E

[
v∗t+1(qt, zt, It+1)

]}
where

R(ν)(zt, It) =



−KnPtzt/(θτ) if ν = niCP,

−KnPtτzt/θ if ν = niCS,

−KnPtγτzt if ν = niDS,

−KpPtzt/(θτ) if ν = piCP,

−KpPtτzt/θ if ν = piCS,

−KpPtγτzt if ν = piDS.

Leveraging our structural results, we can easily calculate the optimal target storage level

Z∗
t (Qt, St, It) in terms of Z

(ν)
t (It) (see Theorem 2). In the remainder of the paper, we occasionally

suppress the dependencies of Y
(ν)
t (It) and Z

(ν)
t (It) on It for notational simplicity. This alternative

calculation method enables significant computational savings (see Section 6).

We denote by Ω the domain of (Qt, St,Wt), i.e., Ω := [−
¯
E, Ē] × [0,CS] × [0,∞). For storage

policy characterization, we consider two different partitioning schemes for this domain. The first

partitioning scheme is based on the relationship between f(Wt) and CT , leading to three disjoint sets

Λ1, Λ2, and Λ3. Set Λ1 := {(Qt, St,Wt)∈Ω : f(Wt)≥CT +min{CS−St,CC}/θ} represents the case

where the wind power potential in period t exceeds the maximum total amount of energy that can
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be used for selling and storing in period t. Set Λ2 := {(Qt, St,Wt)∈Ω :CT +min{CS−St,CC}/θ >

f(Wt)≥ CT} represents the case where the wind power potential in period t is greater than the

transmission capacity but less than the maximum total amount of energy that can be used for

selling and storing in period t. Set Λ3 := {(Qt, St,Wt)∈Ω :CT > f(Wt)} represents the case where

the wind power potential in period t is less than the transmission capacity.

The second partitioning scheme is based on the relationship between f(Wt) and Qt, leading

to disjoint sets Ψ+
1 , Ψ

−
1 , Ψ

+
2 , Ψ

−
2 , Ψ

+
3 , and Ψ−

3 . The superscript gives the sign of commitment

level. Sets Ψ+
1 := {(Qt, St,Wt) ∈ Ω : f(Wt) ≥ Qt/τ + min{CS − St,CC}/θ, Qt ≥ 0} and Ψ−

1 :=

{(Qt, St,Wt)∈Ω : f(Wt)≥ τQt +min{CS −St,CC}/θ, Qt < 0} represent the cases where the wind

power potential in period t is greater than the maximum total amount of energy that can be used

for meeting the commitment and storing in period t. Sets Ψ+
2 := {(Qt, St,Wt)∈Ω :Qt/τ+min{CS−

St,CC}/θ > f(Wt) ≥ Qt/τ, Qt ≥ 0} and Ψ−
2 := {(Qt, St,Wt) ∈ Ω : τQt + min{CS − St,CC}/θ >

f(Wt) ≥ τQt, Qt < 0} represent the cases where the wind power potential in period t is greater

than the amount of energy required to meet the commitment in period t but less than the maxi-

mum total amount of energy that can be used for meeting the commitment and storing in period

t. Lastly, sets Ψ+
3 := {(Qt, St,Wt) ∈Ω :Qt/τ > f(Wt), Qt ≥ 0} and Ψ−

3 := {(Qt, St,Wt) ∈Ω : τQt >

f(Wt), Qt < 0} represent the cases where the wind power potential in period t is less than the

amount of energy required to meet the commitment in period t. Note Ψ−
3 = ∅.

Using the above sets, we construct ten subdomains of Ω: Λ1, Λ2∩Ψ+
1 , Λ2∩Ψ−

1 , Λ2∩Ψ+
2 , Λ2∩Ψ−

2 ,

Λ3 ∩Ψ+
1 , Λ3 ∩Ψ−

1 , Λ3 ∩Ψ+
2 , Λ3 ∩Ψ−

2 , and Λ3 ∩Ψ+
3 . Note Λ2 ∩Ψ+

3 = ∅ since the condition Qt/τ >

f(Wt)≥ CT is not possible from Lemma 1. Incorporating these subdomains and suppressing the

dependency of Z∗
t (Qt, St, It) on (Qt, St, It) for notational simplicity, we state the main result of this

section:

Theorem 2. The optimal state-dependent target storage levels can be calculated as follows.

(i) If (Qt, St,Wt)∈Λ1, Z
∗
t (Qt, St, It) =CS.

(ii) If (Qt, St,Wt)∈Λ2 ∩Ψ+
1 , Z

∗
t (Qt, St, It) =max

{
Z

(piCS)
t , St

}
.

(iii) If (Qt, St,Wt)∈Λ2 ∩Ψ−
1 ,

Z∗
t (Qt, St, It) =

max
{
Z

(piCP)
t , St + θf(Wt)

}
if St ≤Z

(piCS)
t − θf(Wt),

max
{
Z

(piCS)
t , St

}
if Z

(piCS)
t − θf(Wt)<St.

(iv) If (Qt, St,Wt)∈Λ2 ∩Ψ+
2 ,
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Z∗
t (Qt, St, It) =



max
{
Z

(niCP)
t , St + θf(Wt)

}
if St ≤Z

(niCS)
t − θf(Wt),

max
{
Z

(niCS)
t , St + θ(f(Wt)−Qt/τ)

}
if Z

(niCS)
t − θf(Wt)<St ≤Z

(piCS)
t − θ(f(Wt)−Qt/τ),

max
{
Z

(piCS)
t , St

}
if Z

(piCS)
t − θ(f(Wt)−Qt/τ)<St.

(v) If (Qt, St,Wt)∈Λ2 ∩Ψ−
2 ,

Z∗
t (Qt, St, It) =



max
{
Z

(niCP)
t , St + θ(f(Wt)− τQt)

}
if St ≤Z

(piCP)
t − θ(f(Wt)− τQt),

max
{
Z

(piCP)
t , St + θf(Wt)

}
if Z

(piCP)
t − θ(f(Wt)− τQt)<St ≤Z

(piCS)
t − θf(Wt),

max
{
Z

(piCS)
t , St

}
if Z

(piCS)
t − θf(Wt)<St.

(vi) If (Qt, St,Wt)∈Λ3 ∩Ψ+
1 ,

Z∗
t (Qt, St, It) =

{
max

{
Z

(piCS)
t , St

}
if St ≤Z

(piDS)
t

Z
(piDS)
t if Z

(piDS)
t <St.

(vii) If (Qt, St,Wt)∈Λ3 ∩Ψ−
1 ,

Z∗
t (Qt, St, It) =


max

{
Z

(piCP)
t , St + θf(Wt)

}
if St ≤Z

(piCS)
t − θf(Wt),

max
{
Z

(piCS)
t , St

}
if Z

(piCS)
t − θf(Wt)≤ St ≤Z

(piDS)
t ,

Z
(piDS)
t if Z

(piDS)
t <St.

(viii) If (Qt, St,Wt)∈Λ3 ∩Ψ+
2 ,

Z∗
t (Qt, St, It) =



max
{
Z

(niCP)
t , St + θf(Wt)

}
if St ≤Z

(niCS)
t − θf(Wt),

max
{
Z

(niCS)
t , St + θ(f(Wt)−Qt/τ)

}
if Z

(niCS)
t − θf(Wt)<St ≤Z

(piCS)
t − θ(f(Wt)−Qt/τ),

max
{
Z

(piCS)
t , St

}
if Z

(piCS)
t − θ(f(Wt)−Qt/τ)<St ≤Z

(piDS)
t ,

Z
(piDS)
t

if Z
(piDS)
t <St.

(ix) If (Qt, St,Wt)∈Λ3 ∩Ψ−
2 ,
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Z∗
t (Qt, St, It) =



max
{
Z

(niCP)
t , St + θ(f(Wt)− τQt)

}
if St ≤Z

(piCP)
t − θ(f(Wt)− τQt),

max
{
Z

(piCP)
t , St + θf(Wt)

}
if Z

(piCP)
t − θ(f(Wt)− τQt)<St ≤Z

(piCS)
t − θf(Wt),

max
{
Z

(piCS)
t , St

}
if Z

(piCS)
t − θf(Wt)<St ≤Z

(piDS)
t ,

Z
(piDS)
t

if Z
(piDS)
t <St.

(x) If (Qt, St,Wt)∈Λ3 ∩Ψ+
3 ,

Z∗
t (Qt, St, It) =



max
{
Z

(niCP)
t , St + θf(Wt)

}
if St ≤Z

(niCS)
t − θf(Wt),

max
{
Z

(niCS)
t , St

}
if Z

(niCS)
t − θf(Wt)<St ≤Z

(niDS)
t ,

max
{
Z

(niDS)
t , St− (Qt/τ − f(Wt))/γ

}
if Z

(niDS)
t <St ≤Z

(piDS)
t +(Qt/τ − f(Wt))/γ,

Z
(piDS)
t

if Z
(piDS)
t +(Qt/τ − f(Wt))/γ < St.

Theorem 2 formulates the optimal target storage level Z∗
t (Qt, St, It) in terms of Z

(ν)
t (It), condi-

tional on the ten subdomains defined earlier. It implies that when the available energy is too low,

it is optimal to charge the battery and purchase energy from the market. In this case, the producer

chooses to bring the storage level up to Z
(niCP)
t (It) or Z

(piCP)
t (It). When the available energy is mod-

estly high, the producer gains the flexibility to charge the battery and sell energy to the market. In

this case, the producer chooses to bring the storage level up to Z
(niCS)
t (It) or Z

(piCS)
t (It). When the

available energy is high enough, it is optimal to keep the storage level unchanged. However, when

the available energy is too high, it is optimal to discharge the battery and sell energy to the market.

In this case, the producer chooses to bring the storage level down to Z
(niDS)
t (It) or Z

(piDS)
t (It).

For a special case of our problem when the system is perfectly efficient (i.e., when γ = θ= τ = 1),

we provide in Section 4 an illustration of the optimal target storage level (restricted to the decision

types ni and pi), conditional on four disjoint subdomains of (Qt, St,Wt). We also discuss in Section 4

how the optimal type of imbalance is affected by the available energy. For another special case of

our problem when the producer is free of commitment decisions (i.e., when Kp =Kn = 1), we refer

the reader to Zhou et al. (2019) for an illustration of the optimal target storage level (restricted to

the decision types CP, CS, and DS), conditional on three disjoint subdomains of (St,Wt).
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Proposition 2. The optimal target storage levels obey the following properties:

(a) Z
(niCP)
t ≤Z

(piCP)
t , Z

(niCS)
t ≤Z

(piCS)
t , and Z

(niDS)
t ≤Z

(piDS)
t .

(b) Z
(niCP)
t ≤Z

(niCS)
t ≤Z

(niDS)
t and Z

(piCP)
t ≤Z

(piCS)
t ≤Z

(piDS)
t .

Point (a) of Proposition 2 states that the optimal target storage level is higher when the optimal

storage action leads to a positive imbalance than when it leads to a negative imbalance. This is

because the optimality of positive (negative) imbalance is a consequence of excess (limited) energy

availability. The optimal target storage level may thus increase as the current storage level grows

for a fixed wind power potential. Point (b) of Proposition 2 states that the optimal storage level is

highest if the optimal decision type is DS and lowest if it is CP. This ranking is a consequence of the

battery and transmission line inefficiencies. While Z
(niCS)
t =Z

(niDS)
t and Z

(piCS)
t =Z

(piDS)
t if γ = θ= 1,

Z
(niCP)
t =Z

(niCS)
t and Z

(piCP)
t =Z

(piCS)
t if τ = 1.

4. Illustration of the Optimal Storage Policy under Perfect Efficiency

In this section, in order to simplify our policy illustration, we consider a special case of our problem

in which the system is perfectly efficient (i.e., γ = θ = τ = 1). This special case involves only two

decision types: negative imbalance and positive imbalance. For ν ∈ {ni,pi}, the optimal target levels

for the commitment and storage actions can be calculated as follows:(
Y

(ν)
t (It),Z

(ν)
t (It)

)
:= argmax

(qt,zt)∈[−
¯
E,Ē]×[0,CS ]

{
R(ν)(zt, It)+E

[
v∗t+1(qt, zt, It+1)

]}
where

R(ν)(zt, It) =

{
−KnPtzt if ν = ni,

−KpPtzt if ν = pi.

For optimal storage policy characterization, unlike the original problem, we partition the domain

Ω into four disjoint subdomains: We define the set Υ1 := {(Qt, St,Wt)∈Ω : f(Wt)≥CT +min{CS−

St,CC}} as the subdomain where the wind power potential in period t is greater than the maximum

total amount of energy that can be used for selling and storing in period t. We define the set Υ2 :=

{(Qt, St,Wt) ∈ Ω : CT +min{CS − St,CC} > f(Wt) ≥ Qt +min{CS − St,CC}} as the subdomain

where the wind power potential in period t is less than the maximum total amount of energy that

can be used for selling and storing in period t, but greater than the maximum total amount of

energy that can be used for meeting the commitment and storing in period t. We define the set

Υ3 := {(Qt, St,Wt) ∈ Ω : Qt +min{CS − St,CC} > f(Wt) ≥ Qt −min{St,CD}} as the subdomain

where the wind power potential in period t is less than the maximum total amount of energy that

can be used for meeting the commitment and storing in period t, but greater than the amount of

energy required to meet the commitment after the battery is discharged as much as possible in
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Figure 2 Illustration of Z∗
t (Qt, St, It) for a fixed Qt. Regions separated by dashed lines correspond to different

subdomains of Ω (Υ1 to Υ4 from top to bottom). Different colors indicate different target levels.
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period t. Finally, let Υ4 := {(Qt, St,Wt) ∈Ω :Qt−min{St,CD}> f(Wt)}. With these subdomains

we identify the optimal storage policy structure:

Corollary 1. Under Assumption 1, if γ = θ = τ = 1, the optimal state-dependent target storage

levels can be calculated as follows.

(i) If (Qt, St,Wt)∈Υ1, Z
∗
t (Qt, St, It) =CS.

(ii) If (Qt, St,Wt)∈Υ2, Z
∗
t (Qt, St, It) =Z

(pi)
t (It).

(iii) If (Qt, St,Wt)∈Υ3,

Z∗
t (Qt, St, It) =


Z

(ni)
t (It) if St ≤Z

(ni)
t (It)− f(Wt)+Qt,

St + f(Wt)−Qt if Z
(ni)
t (It)− f(Wt)+Qt <St ≤Z

(pi)
t (It)− f(Wt)+Qt,

Z
(pi)
t (It) if Z

(pi)
t (It)− f(Wt)+Qt <St.

(iv) If (Qt, St,Wt)∈Υ4, Z
∗
t (Qt, St, It) =Z

(ni)
t (It).

We provide an illustration of the optimal storage policy in Figure 2. (i) Suppose that the wind

power potential in period t is extremely large (i.e., (Qt, St,Wt)∈Υ1). See the top region in Figure 2.

Then it is optimal to increase the battery storage level as much as possible. (ii) Suppose that the

wind power potential in period t is large enough to only meet the commitment and charge the

battery as much as possible (i.e., (Qt, St,Wt)∈Υ2). See the second top region in Figure 2. Then it

is optimal to bring the battery storage level as close to Z
(pi)
t (It) as possible. (iii) Suppose that the

wind power potential in period t is not sufficient to meet the commitment and charge the battery

as much as possible (i.e., (Qt, St,Wt) ∈ Υ3). See the third top region in Figure 2. If the battery

storage level is low (i.e., St ≤ Z
(ni)
t (It)− f(Wt) +Qt), it is optimal to bring it as close to Z

(ni)
t (It)

as possible. If it is modestly high (i.e., Z
(ni)
t (It)− f(Wt) +Qt < St ≤ Z

(pi)
t (It)− f(Wt) +Qt), it is
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optimal to meet the commitment as much as possible. If it is high (i.e., Z
(pi)
t (It)−f(Wt)+Qt <St),

it is optimal to bring it as close to Z
(pi)
t (It) as possible. (iv) Suppose that the wind power potential

in period t is extremely small (i.e., (Qt, St,Wt) ∈Υ4). See the bottom region in Figure 2. Then it

is optimal to bring the battery storage level as close to Z
(ni)
t (It) as possible.

These observations together indicate that the optimal target storage level Z∗
t (Qt, St, It) is likely

to switch from Z
(pi)
t (It) to Z

(ni)
t (It) as the system moves from Υ2 to Υ4. In other words, the optimal

imbalance type is likely to shift from positive to negative as the wind power potential decreases.

The optimal imbalance type is also likely to shift from positive to negative as the storage level

shrinks in Υ3. This is because the marginal value of increasing storage is higher at lower levels,

implying that a negative imbalance may be more desirable.

From a practical perspective, the above policy structure offers insights for both operational

decision-making and policy design. Energy producers could benefit from dynamically adjusting

their imbalance preferences in response to current market and wind conditions and battery storage

levels. Once the imbalance type is determined, the target levels Zt(pi) and Zt(ni) play a central role

in specifying the imbalance amount. In parallel, market regulators could implement penalty mech-

anisms that dynamically respond to these changing conditions to discourage imbalance behavior

among market participants. When designed appropriately, such mechanisms induce target levels

Zt(pi) and Zt(ni) that steer imbalances as close as possible to the desired levels.

While the threshold-type policy we derived may resemble the classical base-stock structure from

single-item inventory control, our model differs in several important ways. First, the state space is

more complex. Instead of a single inventory level, it involves two interdependent state variables:

the storage level and the commitment level. This requires establishing joint concavity over a two-

dimensional domain rather than relying on single-variable arguments. Second, the decision variables

are inherently linked. Unlike classical models with largely independent decisions, our model requires

simultaneous choices regarding wind generation, battery operation, and energy commitments, all

under physical constraints such as storage and transmission limits and battery inefficiencies. Third,

the payoff formulation departs from traditional settings. Rather than convex holding and shortage

costs, the payoff reflects an asymmetric imbalance pricing mechanism, formulated as the minimum

of multiple affine functions depending on the direction and magnitude of the energy imbalance.

Finally, the complex interactions between energy-specific features such as conversion and trans-

mission losses, storage and transmission limits, and wind availability segment the decision space

into distinct operational regimes, each associated with a different configuration of actions. This

complex policy structure has no direct counterpart in classical inventory control frameworks.
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5. Heuristic Solution Approach

Structural insights from the problem domain aid in designing effective heuristic solution methods

(e.g., Nadar et al. 2016, Zhou et al. 2019, Avci et al. 2021). Accordingly, Lemma 3 and Theo-

rems 1–2 characterize the optimal policy structure under positive electricity prices, providing a

foundation for our heuristic solution approach. However, unlike other commodities, electricity prices

can become negative. This often results from supply-demand imbalances driven by high renew-

able energy generation, limited storage capacity, and rigid generation constraints.4 To address this,

we develop a heuristic solution procedure that explicitly accounts for negative electricity prices.

Our heuristic procedure calculates the state-dependent target levels for the storage and commit-

ment decisions in each period with a backward induction algorithm. The storage and commitment

actions in positive-price states are determined by the state-dependent target levels, while those

in negative-price states are determined by the myopically optimal storage decisions. We present

below two variants of this heuristic procedure for the discrete-state and discrete-action version of

our MDP. Let Q, S, and I denote the discrete spaces of the commitment level, storage level, and

exogenous state variables (electricity price and wind speed), respectively.

5.1. Solution Approach via Complete State Space

The time-series models that we will adopt from the related literature for our numerical study

involve autoregressive of order one, AR(1), processes. We refer the reader to Zhou et al. (2019),

Avci et al. (2021), and Karakoyun et al. (2023) for detailed descriptions of this family of time-series

models and their calibration with real-world data. It is thus sufficient to include the mean-reverting

component of the price ρt, the spike component of the price Jt, and the deseasonalized wind speed

ξt as the exogenous state variables in our MDP. The spike component here represents sudden and

large moves in the price that are independent across periods. These jumps may arise for several

reasons such as unexpected power plant or transmission line outages and extreme weather events

(Seifert and Uhrig-Homburg 2007). With this new notation, we redefine It = (ρt, Jt, ξt) ∈ I as the

exogenous state tuple in period t. We also define It = (ρt, ξt) as the exogenous state tuple when

the spike component is omitted in period t, and I as the discrete space of the exogenous state

variables without the spike; this notation is needed for our heuristic construction.

4 Despite its growing significance, negative pricing remains relatively underexplored in the operations research and
energy literature. Several studies have examined the interaction between negative prices and battery storage operations
(e.g., Zhou et al. 2016, Zhou et al. 2019, Kim et al. 2020, and Guerra et al. 2023), highlighting the need to incorporate
it into the decision-making process.
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Algorithm 1 Solution approach via complete state space.

1: v̄HCT (QT , ST , IT )← 0, ∀(QT , ST , IT )∈Q×S ×I.
2: for t= T − 1, . . . ,1 do

3: for It ∈ I such that Pt ≥ 0 do

4:
(
Y

(ν),HC
t (It),Z

(ν),HC
t (It)

)
← argmax(qt,zt)∈Q×S

{
R(ν)(zt, It)+EIt+1|It

[
v̄HCt+1(qt, zt, It+1)

]}
, ∀ν.

5: end for

6: for (Qt, St, It)∈Q×S ×I do

7: if Pt ≥ 0 then

8: Compute wHC
t from Lemma 3.

9: Compute ZHC
t (Qt, St, It) from Theorem 2 with Z

(ν)
t (It) replaced by Z

(ν),HC
t (It), ∀ν.

10: Compute sHCt from Theorem 1 with Z∗
t (Qt, St, It) and w∗

t (Qt, St, It) replaced by ZHC
t (Qt, St, It)

and wHC
t .

11: else

12: sHCt ←−min{CS −St,CC , θτCT} and wHC
t ← 0.

13: end if

14: if Pt ≥ 0 and St− sHCt =Z
(ν),HC
t (It) for some ν then

15: Y HC
t (St− sHCt , It)← Y

(ν),HC
t (It)

16: else

17: Y HC
t (St− sHCt , It)← argmaxqt∈Q

{
EIt+1|It

[
v̄HCt+1(qt, St− sHCt , It+1)

]}
.

18: end if

19: qHCt ← Y HC
t (St− sHCt , It)

20: vHCt (Qt, St, It)←R(Qt, It, s
HC
t ,wHC

t )+EIt+1|It

[
v̄HCt+1(q

HC
t , St− sHCt , It+1)

]
.

21: end for

22: v̄HCt (Qt, St, It)←EJt

[
vHCt (Qt, St, It)

]
, ∀(Qt, St, It)∈Q×S ×I.

23: end for

For each period t ∈ T and each state (Qt, St, It), we define vHCt (Qt, St, It) as the value function

of our heuristic method, and Z
(ν),HC
t (It) and Y

(ν),HC
t (It) as the state-dependent target levels of our

heuristic method. Following Lemma 3 and Theorems 1-2, we compute these value functions and

target levels, as well as the corresponding action triplets (qHCt , sHCt ,wHC
t ), by backward induction.

See Algorithm 1. We call this method HC. We consider two main scenarios in this method:

• Suppose that the price is positive in the current state. We first calculate wHC
t from Lemma 3.

We next compute the state-dependent target level ZHC
t (Qt, St, It) from Theorem 2 with Z

(ν)
t (It)

replaced by Z
(ν),HC
t (It), ∀ν. We then compute sHCt from Theorem 1 with Z∗

t (Qt, St, It) replaced

by ZHC
t (Qt, St, It). Finally, if Z

(ν),HC
t (It) is accessible, q

HC
t = Y

(ν),HC
t (It). Otherwise, we calculate

qHCt from equation (2).

• Suppose that the price is negative in the current state. We obtain wHC
t = 0 (i.e., generate no

wind energy) and sHCt =−min{CS −St,CC , θτCT} (i.e., purchase as much energy as possible)

from the myopically optimal solution, but we calculate qHCt again from equation (2).
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The number of states in which we need to compute the target levels in each period is of order

O(|I|) and the number of feasible action triplets that we need to consider for target level compu-

tation in each state is of order O(|Q||S|): the total number of operations required to exhaustively

search the action triplets is of order O(T |Q||S||I|). To speed up computation and save memory,

we calculate first the value function v̄HCt+1(St+1,Qt+1, It+1) := EJt+1

[
vHCt+1(Qt+1, St+1, It+1)

]
in state

(St+1,Qt+1, It+1) in period t+ 1 and then the action triplet in state (Qt, St, It) in period t, using

the target levels calculated with v̄HCt+1(St+1,Qt+1, It+1) and the expectation taken with respect to

It+1|It. This heuristic method accelerates the standard DP algorithm of our problem, without loss

of optimality for systems with positive prices.

5.2. Solution Approach via Reduced State Space

Our method HC calculates the target levels in period t for each exogenous state tuple It in the set

I; see step 3 of Algorithm 1. If the spike component of the price is assumed to be zero, the set I

can be reduced to the set I in Algorithm 1. Since |I|= |I|/|J | where J is the discrete set of the

spike component, the zero-spike assumption significantly reduces the computations of Algorithm 1.

We thus consider a reduced state-space version of our method HC that calculates the target levels,

which we denote by ZHR
t (Qt, St, It) and Y HR

t (St+1, It), by executing Algorithm 1 with J replaced by

J HR := {0}. This variant of our method HC determines the storage action in each state with a zero

spike value and a positive price via the target level ZHR
t (Qt, St, It), but takes a myopic approach in

other states. It also myopically determines the wind power generation action in each state. Finally,

it determines the commitment action in each state via the target level Y HR
t (St+1, It). We call this

method HR. We construct Algorithm 2 to calculate the expected total cash flow of the resulting

heuristic policy with action triplets (qHRt , sHRt ,wHR
t ).

In methods HC and HR, we choose to impose the myopic actions in negative-price states because

the optimal policy structure is unavailable under negative prices, and the myopic actions are

immediately obtained and are expected to be optimal in many negative-price states. The number

of positive-price states is much greater than the number of negative-price states in each of our

data-calibrated instances in Section 6. This has two implications: First, the myopic action in a

negative-price state – charging the battery as much as possible – is also sensible from a forward-

looking perspective since the price will very likely be positive in the next period. Second, the

myopic actions in negative-price states, if suboptimal, can only slightly drain the total profit since

the negative-price states have only a limited contribution to the total profit. In method HR, we

choose to impose the myopic actions in nonzero-spike states because the existence of a spike in any
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Algorithm 2 Solution approach via reduced state space.

1: v̄HRT (QT , ST , IT )← 0, ∀(QT , ST , IT )∈Q×S ×I.
2: for t= T − 1, . . . ,1 do

3: for (Qt, St, It)∈Q×S ×I do

4: if Pt ≥ 0 then

5: Compute wHR
t from Lemma 3.

6: Compute

Zt←


ZHR

t (Qt, St, It) if Jt = 0,

0 if Jt > 0,

CS if Jt < 0.

7: Compute sHRt from Theorem 1 with Z∗
t (Qt, St, It) and w∗

t (Qt, St, It) replaced by Zt and wHR
t .

8: else

9: sHRt ←−min{CS −St,CC , θτCT} and wHR
t ← 0.

10: end if

11: qHRt ← Y HR
t (St− sHRt , It).

12: vHRt (Qt, St, It)←R(Qt, It, s
HR
t ,wHR

t )+EIt+1|It

[
v̄HRt+1(q

HR
t , St− sHRt , It+1)

]
.

13: end for

14: v̄HRt (Qt, St, It)←EJt

[
vHRt (Qt, St, It)

]
, ∀(Qt, St, It)∈Q×S ×I.

15: end for

period leads to an extremely high or low price, making the forward-looking perspective less critical

and suggesting that the myopic action is likely to be optimal. Our numerical study in Section 6.2

verifies our intuition and justifies our use of myopic actions.

6. Numerical Results

We now conduct numerical experiments to evaluate the use of our heuristic methods HC and

HR in the general problem, comparing them to the standard DP algorithm (yielding the optimal

solution) with respect to objective value and computation time (Section 6.1). We also investigate

the potential cost of enforcing myopic actions in non-zero spike states as in our methods HC and

HR (Section 6.2). Finally, we examine the performance of several alternative solution methods with

the same experimental setup (Section 6.3).

We consider instances in which the planning horizon spans the first week of August (T = 168

hours). The wind farm consists of 100 wind turbines, each with a capacity of 1.5 MW, for a

total power capacity of 150 MW. This capacity reflects widely used models globally, such as the

General Electric GE 1.5 series (Sheridan et al. 2024). The energy capacity of the battery (CS) is

500 MWh and the charging/discharging capacities (CC and CD) are 40 or 60 MWh (see California

Energy Commission 2023 and Power Engineering 2023 for similar settings). The battery can thus

be fully charged or discharged in approximately ten hours, consistent with several examples in the
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related literature (Zhou et al. 2019 and U.S. Department of Energy 2020). The battery’s round-

trip efficiency (r = θγ) varies between 0.70 and 0.80 for a lead-acid battery, between 0.75 and

0.85 for a zinc-bromine battery, and between 0.90 and 0.95 for a lithium-ion battery (Zhou et al.

2016 and Arfeen et al. 2020). We thus restrict r to values from the set {0.7,0.8,0.9,1} (including

the perfect efficiency). The charging and discharging efficiencies of the battery (θ and γ) are the

same and equal to the square-root of the round-trip efficiency. This assumption is common in

the literature (Ranaweera and Midtg̊ard 2016, Zhou et al. 2016, Singh and Fernandez 2018, and

Shabani et al. 2021). The energy capacity of the transmission line (CT ) is 200 MWh (Fernandez

et al. 2016, Zhou et al. 2019, Marins et al. 2020, Karakoyun et al. 2023, and Glaum and Hofmann

2023). The transmission line efficiency (τ) is 0.95 or 1, reflecting typical efficiency losses observed

in practice (EIA 2023 and NYISO 2024). We restrict the imbalance parameters (Kp, Kn, K
−
n , and

K−
p ) to values from the set {0.6,0.7, ...,1.4}\{1}. These values are consistent with those commonly

observed in practice and reported in the literature (Löhndorf and Minner 2010, Chaves-Ávila et al.

2014, Hassler 2017, RTE 2022, and PWC 2023).

We implement the time-series models described by Karakoyun et al. (2023) into the exogenous

stochastic process of our MDP. The negative price occurrence frequency (NPF) is 4.07% according

to these models. We consider this original setting as well as a hypothetical one where the price is

assumed to be always nonnegative. In all instances, the discretization level is 20 MWh, the initial

storage level S1 is the closest state to CS/2, the initial commitment level Q1 is the maximum

amount of energy that can be committed to selling, and the initial exogenous state I1 = (ρ1, J1, ξ1)

is (0,0,5). We construct a total of 48 instances with the above specifications. All computations

were executed on a dual 3.7 GHz Intel Xeon W-2255 CPU server with 96 GB of RAM.

6.1. Performance of Our Solution Approaches

Tables 2 and 3 exhibit the optimality gaps and computation times of our solution approaches. Our

method HC yields the optimal solution when the price is always positive (as shown in Lemma 3

and Theorems 1–2). We also observe that its optimal performance extends to instances where the

price can also be negative; its optimality gap is no larger than 0.00022% in Tables 2 and 3. Our

method HC reduces the computation time of the standard DP algorithm by up to 69 times.

Our method HR performs only slightly worse than our method HC with respect to objective

value: it yields solutions with a maximum distance of 0.85% and an average distance of 0.30% from

optimal. Our method HR, however, provides a further significant advantage in computations: the

execution of our method HR takes only half a minute while that of the standard DP algorithm
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Table 2 Optimality gaps and computation times when Kp =K−
n = 0.9, Kn =K−

p = 1.1, CS = 500 MWh,

CT = 200 MWh.

CC =CD NPF τ r
Optimality gaps Computation times (minutes)

HC HR Optimal policy HC HR

0.7 0.00% 0.40% 205.4 4.0 0.5

0.95
0.8 0.00% 0.32% 203.7 3.8 0.5
0.9 0.00% 0.28% 204.3 3.8 0.5

0
1 0.00% 0.24% 203.1 3.8 0.5

0.7 0.00% 0.40% 202.2 3.8 0.5

1
0.8 0.00% 0.32% 201.9 3.8 0.5
0.9 0.00% 0.27% 202.7 3.8 0.5

40
1 0.00% 0.24% 157.5 3.4 0.4

0.7 0.00% 0.21% 204.5 3.8 0.5

0.95
0.8 0.00% 0.16% 204.5 3.8 0.5
0.9 0.00% 0.15% 204.2 3.8 0.5

4.07%
1 0.00% 0.13% 203.1 3.8 0.5

0.7 0.00% 0.21% 202.6 3.8 0.5

1
0.8 0.00% 0.17% 202.9 3.8 0.5
0.9 0.00% 0.14% 202.3 3.8 0.5
1 0.00% 0.13% 157.1 3.4 0.4

0.7 0.00% 0.85% 318.8 4.7 0.5

0.95
0.8 0.00% 0.65% 319.5 5.2 0.6
0.9 0.00% 0.52% 319.3 5.4 0.6

0
1 0.00% 0.44% 317.3 5.4 0.6

0.7 0.00% 0.84% 319.2 4.7 0.5

1
0.8 0.00% 0.65% 317.3 5.1 0.5
0.9 0.00% 0.48% 321.4 5.3 0.6

60
1 0.00% 0.40% 248.7 4.8 0.5

0.7 0.00% 0.49% 318.8 4.8 0.5

0.95
0.8 0.00% 0.36% 319.4 5.1 0.6
0.9 0.00% 0.29% 319.3 5.4 0.6

4.07%
1 0.00% 0.25% 318.0 5.4 0.6

0.7 0.00% 0.48% 322.1 4.7 0.5

1
0.8 0.00% 0.37% 317.5 5.1 0.5
0.9 0.00% 0.27% 317.1 5.3 0.6
1 0.00% 0.22% 249.1 4.8 0.5

takes several hours. All these results highlight the high efficiency and scalability of our solution

methods constructed with structural knowledge.

We observe from Table 2 that our method HR induces lower optimality gaps when the bat-

tery charging/discharging capacities are small and the negative electricity prices are observed: The

decisions of our method HR, if suboptimal, can only slightly deviate from the optimal decisions

when the producer is better motivated for energy arbitrage but has limited flexibility in its charg-

ing/discharging decisions. We observe from Table 3 that the performance of our method HR is

relatively robust to changes in the imbalance parameters.

We also tested the performance of our methods on instances with NPF values up to 25.8%,
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Table 3 Optimality gaps and computation times when CS = 500 MWh, CC =CD = 40 MWh, CT = 200 MWh,

NPF = 4.07%, τ = 0.95, r= 0.8.

Kp =K−
n Kn =K−

p
Optimality gaps Computation times (minutes)

HC HR Optimal policy HC HR

1.1 0.00% 0.30% 204.8 3.8 0.5

0.6
1.2 0.00% 0.26% 204.4 3.8 0.5
1.3 0.00% 0.19% 205.0 3.8 0.5
1.4 0.00% 0.16% 205.1 3.8 0.5

1.1 0.00% 0.23% 205.6 3.8 0.5

0.7
1.2 0.00% 0.21% 204.7 3.9 0.5
1.3 0.00% 0.16% 204.0 3.8 0.5
1.4 0.00% 0.16% 204.2 3.8 0.5

1.1 0.00% 0.21% 205.9 3.8 0.5

0.8
1.2 0.00% 0.19% 204.4 3.8 0.5
1.3 0.00% 0.18% 204.5 3.8 0.5
1.4 0.00% 0.19% 205.3 3.8 0.5

1.1 0.00% 0.16% 206.5 3.8 0.5

0.9
1.2 0.00% 0.16% 204.0 3.8 0.5
1.3 0.00% 0.18% 205.2 3.8 0.5
1.4 0.00% 0.18% 205.8 3.8 0.5

obtained by increasing the spike occurrence probabilities.5 Our method HC continues to yield the

optimal solution regardless of the NPF level. In contrast, the performance of our method HR

degrades as the NPF level increases. This decline is primarily due to its target-level calculation

method, which relies on the zero-spike assumption that becomes more restrictive at higher NPF

values. Nevertheless, even in the extreme case of 25.8% NPF, HR performs only 3.62% worse than

the optimal solution.

6.2. Numerical Investigation of the Impact of Myopic Actions

Our method HC takes a myopic approach when the price is negative. Our method HR takes a

myopic approach when the price is positive and the spike is nonzero, or when the price is negative.

On our experimental test bed, on average, 5.7% of the positive-price states have nonzero spikes,

91.9% of the positive-price nonzero-spike states have positive spikes, and all of the negative-price

states have negative spikes. In our experiments, since the negative prices can only arise due to

negative spikes, our method HR indeed imposes the myopic actions in all nonzero-spike states,

while taking the forward-looking actions in all zero-spike states.

We intuitively expect the myopic actions of HR to be often optimal. We performed experiments

to test our intuition: We define MD as the percentage of the nonzero-spike states in which the

5 Negative prices were observed in the U.S. about 4% of the time in 2021. These were concentrated in specific regions
such as parts of Kansas and Oklahoma within the Southwest Power Pool, where they accounted for over 25% of all
hours (Berkeley Lab 2021).
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Table 4 Numerical results when Kp =K−
n = 0.9, Kn =K−

p = 1.1, CS = 500 MWh, CT = 200 MWh.

CC =CD NPF τ r MD MS-TCF FS-TCF NS-TCF

0.7 100.00% 26.99% 0.00% 73.01%

0.95
0.8 100.00% 27.08% 0.00% 72.92%
0.9 100.00% 27.09% 0.00% 72.91%

0
1 100.00% 27.06% 0.00% 72.94%

0.7 100.00% 26.99% 0.00% 73.01%

1
0.8 100.00% 27.08% 0.00% 72.92%
0.9 100.00% 27.08% 0.00% 72.92%

40
1 100.00% 27.05% 0.00% 72.95%

0.7 99.30% 27.48% 0.04% 72.48%

0.95
0.8 99.40% 27.45% 0.04% 72.51%
0.9 99.49% 27.42% 0.03% 72.55%

4.02%
1 99.57% 27.36% 0.02% 72.61%

0.7 99.33% 27.37% 0.04% 72.58%

1
0.8 99.43% 27.35% 0.04% 72.62%
0.9 99.51% 27.33% 0.03% 72.64%
1 99.60% 27.27% 0.02% 72.70%

0.7 69.80% 16.55% 11.93% 71.52%

0.95
0.8 71.53% 17.26% 11.19% 71.55%
0.9 74.91% 18.67% 9.68% 71.65%

0
1 78.14% 19.84% 8.40% 71.76%

0.7 69.67% 16.88% 12.27% 70.86%

1
0.8 71.40% 17.67% 11.53% 70.80%
0.9 73.18% 18.99% 10.09% 70.92%

60
1 79.83% 20.27% 8.65% 71.08%

0.7 81.42% 17.82% 11.93% 70.25%

0.95
0.8 82.60% 18.41% 11.19% 70.40%
0.9 84.48% 19.56% 9.88% 70.56%

4.02%
1 86.81% 20.86% 8.39% 70.75%

0.7 81.43% 17.62% 11.99% 70.39%

1
0.8 82.60% 18.18% 11.24% 70.58%
0.9 83.77% 18.85% 10.45% 70.70%
1 87.63% 21.30% 7.82% 70.87%

myopic decision is optimal according to the exact solution algorithm (i.e., the percentage of the

myopic actions of HR that are indeed optimal). We also define FS-TCF as the percentage of the

total cash flow that comes from the revenues collected in the nonzero-spike states in which the

optimal decision is forward-looking (as opposed to myopic in HR). See Tables 4 and 5 for our results

on the same test bed as in Section 6.1. We have found that MD is 92.55% and FS-TCF is only

3.49% on average. These results verify our intuition and show that the myopic decisions of HR, if

not optimal, can only slightly drain the profits. We note that MD is substantially lower when the

charging/discharging capacities are large and thus the level of flexibility in charging/discharging

decisions is high.

We also examined the contribution of the nonzero-spike states to the total cash flow according

to the exact solution algorithm: We define MS-TCF as the percentage of the total cash flow that
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Table 5 Numerical results when CS = 500 MWh, CC =CD = 40 MWh, CT = 200 MWh, NPF = 4.07%, τ = 0.95,

r= 0.8.

Kp =K−
n Kn =K−

p MD MS-TCF FS-TCF NS-TCF

1.1 99.37% 25.95% 0.04% 74.01%

0.6
1.2 99.23% 25.81% 0.05% 74.14%
1.3 99.12% 25.68% 0.06% 74.26%
1.4 99.05% 25.61% 0.07% 74.32%

1.1 99.38% 26.50% 0.04% 73.46%

0.7
1.2 99.24% 26.41% 0.05% 73.54%
1.3 99.13% 26.34% 0.06% 73.60%
1.4 99.06% 26.33% 0.07% 73.60%

1.1 99.39% 27.01% 0.04% 72.95%

0.8
1.2 99.26% 26.96% 0.05% 72.99%
1.3 99.17% 26.94% 0.05% 73.01%
1.4 99.09% 26.95% 0.06% 72.99%

1.1 99.40% 27.45% 0.04% 72.51%

0.9
1.2 99.28% 27.47% 0.04% 72.49%
1.3 99.20% 27.49% 0.05% 72.46%
1.4 99.12% 27.49% 0.06% 72.45%

comes from the revenues collected in the nonzero-spike states in which the optimal decision is

myopic. We define NS-TCF as the percentage of the total cash flow that comes from the revenues

collected in the zero-spike states (in which HR takes the forward-looking perspective). Note that

the sum of MS-TCF, FS-TCF, and NS-TCF equals one in each instance. See again Tables 4 and 5.

We observe that the percentage of the total cash flow that comes from the revenues collected in the

nonzero-spike states (MS-TCF plus FS-TCF) is 27.40% on average: the zero-spike states have a

much greater impact on total cash flow than the nonzero-spike states, making the forward-looking

perspective critical in our experiments. The myopic decisions of HR (in the nonzero-spike states)

alone cannot guarantee a near-optimal performance. The higher level of sophistication that HR

involves via forward-looking decisions (in the zero-spike states) is clearly useful.

6.3. Alternative Solution Methods

Our method HC takes a myopic approach in negative-price states and our method HR extends

this approach to nonzero-spike states. We now evaluate the use of a myopically optimal policy that

adopts the optimal solution of the two-period problem in each state (even when the price is positive

and the spike component is zero) as an alternative heuristic approach for our problem. We call

this method M. We consider here the two-period problem because the commitment decision in the

current period can only affect the payoff in the next period. See Tables 6 and 7 for our results on

the same test bed as in Section 6.1. We have found that the myopic policy yields solutions with an

average distance of 8.88%, a maximum distance of 11.38%, and a minimum distance of 7.26% from
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Table 6 Optimality gaps for alternative solution methods when Kp =K−
n = 0.9, Kn =K−

p = 1.1, CS = 500

MWh, CT = 200 MWh.

CC =CD NPF τ r
Optimality gaps

M F1 F2 DR

0.7 7.63% 11.30% 11.28% 3.13%

0.95
0.8 7.96% 8.20% 10.42% 3.43%
0.9 8.54% 6.20% 8.45% 2.27%

0
1 9.03% 5.10% 7.41% 2.25%

0.7 7.67% 7.50% 7.75% 3.18%

1
0.8 7.96% 5.20% 6.86% 3.50%
0.9 8.44% 4.20% 5.27% 2.30%

40
1 9.01% 3.70% 4.92% 2.45%

0.7 7.26% 10.80% 10.78% 2.54%

0.95
0.8 7.67% 7.70% 9.82% 2.77%
0.9 8.46% 5.80% 7.92% 2.17%

4.02%
1 8.84% 4.80% 6.98% 2.10%

0.7 7.29% 7.00% 7.19% 2.59%

1
0.8 7.68% 4.80% 6.48% 2.83%
0.9 8.47% 3.90% 4.96% 2.19%
1 8.83% 3.50% 4.64% 2.34%

0.7 9.73% 14.90% 14.89% 4.05%

0.95
0.8 10.19% 11.50% 13.75% 4.34%
0.9 10.86% 7.60% 9.53% 3.12%

0
1 11.38% 5.40% 8.23% 3.02%

0.7 9.80% 10.00% 10.52% 4.08%

1
0.8 10.19% 6.60% 8.94% 4.41%
0.9 10.75% 4.50% 6.33% 3.20%

60
1 11.35% 4.00% 5.42% 3.31%

0.7 8.99% 13.90% 13.92% 3.30%

0.95
0.8 9.57% 10.80% 12.7% 3.52%
0.9 10.55% 6.90% 8.65% 2.95%

4.02%
1 10.92% 4.90% 7.52% 2.81%

0.7 9.09% 9.00% 9.51% 3.33%

1
0.8 9.63% 6.00% 8.18% 3.60%
0.9 10.60% 4.10% 5.71% 3.04%
1 10.93% 3.80% 4.90% 3.15%

optimal. Comparing these results with our results for HC and HR, a forward-looking approach is

arguably more suitable in positive-price states that are not dominantly large.

We also evaluate the use of fixed threshold policies as another heuristic approach for our problem.

The target storage and commitment levels vary with the exogenous state variables in Theorems 1–

2. For the fixed threshold policy, however, the target levels remain constant within each period but

vary from one period to another. We consider two variants of the fixed threshold policy, which we

call F1 and F2, respectively. F1 calculates the target levels in period t by restricting the exogenous

state tuple It to its prediction Ît based on the initial state tuple I1 in the backward algorithm of our

method HC. The prediction for k periods later is found by first raising the transition probability

matrices (obtained from the time-series models) to the kth power and then taking the expectations
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Table 7 Optimality gaps for alternative solutions methods when CS = 500 MWh, CC =CD = 40 MWh,

CT = 200 MWh, NPF = 4.07%, τ = 0.95, r= 0.8.

Kp =K−
n Kn =K−

p
Optimality gaps

M F1 F2 DR

1.1 7.99% 4.80% 4.92% 4.14%

0.6
1.2 8.52% 4.20% 4.21% 3.28%
1.3 8.44% 4.20% 4.16% 3.18%
1.4 8.53% 4.40% 4.36% 3.30%

1.1 7.86% 4.40% 4.42% 3.28%

0.7
1.2 8.40% 4.00% 3.95% 2.70%
1.3 8.36% 4.00% 4.03% 2.72%
1.4 8.33% 4.30% 4.33% 2.94%

1.1 7.77% 4.10% 4.76% 3.24%

0.8
1.2 8.37% 4.00% 5.03% 3.05%
1.3 8.24% 4.40% 5.04% 3.27%
1.4 8.13% 4.70% 5.34% 3.64%

1.1 7.67% 7.70% 9.82% 2.77%

0.9
1.2 8.21% 7.30% 7.92% 3.13%
1.3 8.12% 7.80% 8.12% 3.56%
1.4 7.93% 7.80% 7.41% 4.12%

via the resulting distributions. F2 calculates the target levels in period t by taking the expectation

over the exogenous state tuple It conditional on the initial state tuple I1. Specifically, we change

step 4 in the backward algorithm of our method HC to(
Y

(ν),HC
t ,Z

(ν),HC
t

)
← argmax(

Y
(ν)
t ,Z

(ν)
t

)
∈Q×S

{
EIt|I1

[
R(ν)(Z

(ν)
t , It)+EIt+1|It

[
v̄HCt+1(Y

(ν)
t ,Z

(ν)
t , It+1)

]]}
.

Like our method HR, both F1 and F2 use the target levels to determine the storage and commitment

decisions in states with a zero spike value and a positive price, and take the myopic approach in

all other states. See again Tables 6 and 7 for our results. We have found that F1 yields solutions

with an average distance of 6.36%, a maximum distance of 14.90%, and a minimum distance of

3.50% from optimal. F2 yields solutions with an average distance of 7.45%, a maximum distance

of 14.89%, and a minimum distance of 3.95% from optimal. These results imply that ignoring the

state information in target level calculation causes a significant loss of optimality, demonstrating

the usefulness of state-dependent policies in our problem.

Finally, we consider a deterministic reoptimization heuristic that solves a simpler version of our

problem in each period obtained by replacing the random components with their expected values

conditional on the current state. We call this method DR. The deterministic problem in state

(Qt, St, It) is given by

max
{(qη ,sη ,wη ,S′

η)}η∈T :η≥t

∑
η∈T :η≥t

R(qη−1, It,η, sη,wη)
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where S′
t = St, S

′
η+1 = S′

η − sη, ∀η ≥ t, qt−1 =Qt, (qη, sη,wη) ∈ U(qη−1, S
′
η, It,η), ∀η ≥ t, and It,η :=

(Pt,η,Wt,η) is the expected exogenous state in period η conditional on the exogenous state It in

period t. The objective is to maximize the total cash flow in periods from t through T . The

objective function can be linearized when Pt,η > 0, ∀η≥ t, since the payoff function in each period

can be shown to be the minimum of affine functions in this case. This heuristic restricts all price

expectations to be nonnegative and solves a linear program when Pt > 0: the actions in period t

are given by the optimal actions of period t obtained from the linear program. It takes a myopic

approach when Pt ≤ 0: the actions in period t are given by the optimal actions of the two-period

problem with states It,t and It,t+1. See again Tables 6 and 7 for our results. This heuristic yields

solutions with an average distance of 3.12%, a maximum distance of 4.41%, and a minimum distance

of 2.10% from optimal, performing worse than HC and HR. The precise modeling of uncertainties

as in HC and HR thus seems useful in our problem setting.

7. Concluding Remarks

We have examined the energy commitment, generation and storage problem for a wind farm paired

with a battery in the presence of uncertainties in the electricity price and wind speed. The power

producer participates in an electricity market that operates with hourly commitments and set-

tlements. Modeling this problem as an MDP, we establish the optimality of a state-dependent

threshold policy for the storage and commitment problem under positive electricity prices. Lever-

aging this policy structure, we construct two heuristic solution methods (HC and HR) for the more

general problem in which the price can also be negative. With data-calibrated time series models

for the electricity price and wind speed, we numerically test the performance of these solution

methods in the general problem.

Our experiments have revealed the optimal performance of our method HC in all instances.

Furthermore, our method HC has an average solution time of 4.2 minutes, whereas the standard

DP algorithm has an average solution time of almost 4 hours. Our method HR, on the other

hand, provides near-optimal solutions with an average distance of 0.30% from optimal within half a

minute. Our experiments have also revealed the relatively poor performance of simpler alternative

solution methods (purely myopic solution approach, fixed threshold policies, and deterministic

reoptimization heuristic) with respect to objective value.

Future research may consider other market settings in which the power producer makes commit-

ments for a longer time window (e.g., day-ahead markets) or for multiple time windows of different

lengths (e.g., sequential markets). Despite the added complexity of these settings, our results could
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inform the design of simplified policy structures that serve as effective heuristic solutions. One such

setting is a two-settlement electricity market where the producer first makes commitments in the

day-ahead market and then settles real-time deviations at imbalance prices in the balancing market.

In this setting, our policy structure could be adapted to determine hourly energy generation and

storage levels, conditional on the prespecified day-ahead commitments and prices. This approach

may perform well by accounting for intraday price and supply uncertainties that have immediate

effects, without requiring full consideration of day-ahead market dynamics that have more indirect

effects. Future research may also extend our work by incorporating investment-related decisions

and examining the impact of cycle-induced battery degradation on long-term profitability and

operational strategy.
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Online Technical Appendix. Proofs of the Analytical Results

Proof of Lemma 1. Let
¯
Qt and Q̄t denote some bounds on E(st,wt) in state (Qt, St, It) such that

¯
Qt ≤

E(st,wt) ≤ Q̄t. Note that R(·, It, st,wt) is a decreasing function for Qt ≥ E(st,wt) since Pt(1−Kn) < 0 if

Pt ≥ 0 and Pt(1−K−
n )< 0 if Pt < 0. Thus R(Q̄t +α, It, st,wt)<R(Q̄t, It, st,wt) for α> 0. This implies that

v∗
t (Q̄t +α,St, It) = max

(qt,st,wt)∈U(Q̄t+α,St,It)

{
R(Q̄t +α, It, st,wt)+EIt+1|It

[
v∗
t+1(qt, St+1, It+1)

]}
< max

(qt,st,wt)∈U(Q̄t,St,It)

{
R(Q̄t, It, st,wt)+EIt+1|It

[
v∗
t+1(qt, St+1, It+1)

]}
= v∗

t (Q̄t, St, It). (EC.1)

Also, note that R(·, It, st,wt) is an increasing function for Qt ≤E(st,wt) since Pt(1−Kp)> 0 when Pt ≥ 0

and Pt(1−K−
p )> 0 when Pt < 0. Thus R(

¯
Qt−α, It, st,wt)<R(

¯
Qt, It, st,wt) for α> 0. This implies that

v∗
t (
¯
Qt−α,St, It) = max

(qt,st,wt)∈U(
¯
Qt−α,St,It)

{
R(

¯
Qt−α, It, st,wt)+EIt+1|It

[
v∗
t+1(qt, St+1, It+1)

]}
< max

(qt,st,wt)∈U(
¯
Qt,St,It)

{
R(

¯
Qt, It, st,wt)+EIt+1|It

[
v∗
t+1(qt, St+1, It+1)

]}
= v∗

t (
¯
Qt, St, It). (EC.2)

Let η∗
t (Qt, St, It) = (q, s,w). Assume to the contrary that q > Q̄t+1. Then v∗

t (Qt, St, It) = R(Qt, It, s,w) +

E
[
v∗
t+1(q,St− s, It+1)

]
≥R(Qt, It, s,w)+E

[
v∗
t+1(Q̄t+1, St− s, It+1)

]
. But this leads to a contradiction since

v∗
t+1(q,St−s, It+1)< v∗

t+1(Q̄t+1, St−s, It+1) from (EC.1). Hence q≤ Q̄t+1. Now, assume to the contrary that

q <
¯
Qt+1. Then v∗

t (Qt, St, It) =R(Qt, It, s,w) +E
[
v∗
t+1(q,St − s, It+1)

]
≥R(Qt, It, s,w) +E

[
v∗
t+1(

¯
Qt+1, St −

s, It+1)
]
. But this leads to a contradiction since v∗

t+1(q,St − s, It+1)< v∗
t+1(

¯
Qt+1, St − s, It+1) from (EC.2).

Hence q ≥
¯
Qt+1. We showed that

¯
Qt+1 ≤ qt ≤ Q̄t+1. Since −min{(CS − St+1)/(θτ),

¯
E} ≤ E(st+1,wt+1) ≤

min{τ(γSt+1 + f̄), Ē}, note that −min{(CS − (St − st))/(θτ),
¯
E} ≤ qt ≤min{τ(γ(St − st) + f̄), Ē}, ∀t ∈ T .

Since Qt+1 = qt, we have −min{(CS −St)/(θτ),
¯
E} ≤Qt ≤min{τ(γSt + f̄), Ē}, ∀t∈ T \{1}. □

Proof of Lemma 2. Note that v∗
T (QT , ST , IT ) = v∗

T (QT , ST + α, IT ) = 0 for α > 0. Assuming

v∗
t+1(Qt+1, St+1, It+1) ≤ v∗

t+1(Qt+1, St+1 + α, It+1), we show v∗
t (Qt, St, It) ≤ v∗

t (Qt, St + α, It). Let

η∗
t (Qt, St, It) = (q, s,w). Also, let ŝ=max{s,St +α−CS} and

ŵ=

{
w if ŝ= s,

max{0,w− (ŝ− s)/θ} if ŝ ̸= s.

We show that (q, ŝ, ŵ) ∈U(Qt, St +α, It): If s < St +α−CS, since (q, s,w) ∈U(Qt, St, It), note that −CC ≤

s < St+α−CS = ŝ≤min{St+α,CD}. If s≥ St+α−CS, since (q, s,w)∈U(Qt, St, It), note that −min{CS−

St − α,CC} ≤ ŝ = s ≤min{St + α,CD}. Thus −min{CS − St − α,CC} ≤ ŝ ≤min{St + α,CD}. Since s ≤ ŝ,

we have 0≤ ŵ ≤w≤ f(Wt). If ŝ= s, then −CT ≤E(s,w) =E(ŝ, ŵ)≤ τCT . If s < ŝ= St +α−CS ≤ 0, then

ŝ/θ + ŵ = ŝ/θ +max{0,w − (ŝ− s)/θ} = max{ŝ/θ, s/θ + w} ≤ CT and −τCT ≤ s/θ + w ≤ ŝ/θ + ŵ. Hence

(q, ŝ, ŵ)∈U(Qt, St +α, It). We consider the following three cases to show that E(s,w)≤E(ŝ, ŵ):

(1) If s≥ St +α−CS, then ŝ= s and ŵ=w. Thus E(s,w) =E(ŝ, ŵ).

(2) If s < St +α−CS ≤ 0 and −w ≤ s/θ < 0, then ŝ≤ 0 and ŝ/θ+ ŵ =max{ŝ/θ, s/θ+w}= s/θ+w ≥ 0.

Thus E(s,w) = (s/θ+w)τ = (ŝ/θ+ ŵ)τ =E(ŝ, ŵ).
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(3) If s < St + α − CS ≤ 0 and s/θ < −w ≤ 0, then ŝ ≤ 0 and ŝ/θ + ŵ = max{ŝ/θ, s/θ + w} ≤ 0. Thus

E(s,w) = (s/θ+w)/τ ≤ (ŝ/θ+ ŵ)/τ =E(ŝ, ŵ).

Hence E(s,w) ≤ E(ŝ, ŵ). Thus R(Qt, It, s,w) ≤ R(Qt, It, ŝ, ŵ). Note ŝ ≤ s+ α since (q, s,w) ∈ U(Qt, St, It).

Thus v∗
t (Qt, St, It) =R(Qt, It, s,w)+E

[
v∗
t+1(q,St− s, It+1)

]
≤R(Qt, It, ŝ, ŵ)+E

[
v∗
t+1(q,St +α− ŝ, It+1)

]
≤

v∗
t (Qt, St +α, It). The first inequality holds since v∗

t+1(Qt+1, St+1, It+1)≤ v∗
t+1(Qt+1, St+1 +α, It+1). □

Proof of Lemma 3. Let η∗
t (Qt, St, It) = (q, s,w). Also, let w̄ := min{f(Wt),CT + min{CS − St,CC}/θ}

denote the maximum amount of wind energy that can be generated in state (Qt, St, It) and (q, ŝ, ŵ) ∈

U(Qt, St, It) denote any feasible action triplet with ŵ < w̄. We will show that it is possible to construct a

feasible action triplet that is more profitable than the triplet (q, ŝ, ŵ) in each of the following four cases:

(1) Suppose that E(ŝ, ŵ) < 0: We define ∆1 = min{−τE(ŝ, ŵ), w̄ − ŵ} > 0. Note that −CT ≤ E(ŝ, ŵ) <

E(ŝ, ŵ)+∆1/τ =E(ŝ, ŵ+∆1)≤ 0 and 0≤ ŵ < ŵ+∆1 ≤ w̄≤ f(Wt). Hence, (q, ŝ, ŵ+∆1)∈U(Qt, St, It)

and R(Qt, It, ŝ, ŵ+∆1)>R(Qt, It, ŝ, ŵ): The triplet (q, ŝ, ŵ+∆1) is better than the triplet (q, ŝ, ŵ).

(2) Suppose that E(ŝ, ŵ) ≥ 0 and ŝ = −min{CS − St,CC}: We define ∆2 = w̄ − ŵ > 0. Note that 0 ≤

E(ŝ, ŵ) < E(ŝ, ŵ +∆2) = (ŝ/θ + ŵ +∆2)τ = (ŝ/θ + w̄)τ ≤ (−min{CS − St,CC}/θ + CT +min{CS −

St,CC}/θ)τ = τCT and 0 ≤ ŵ < ŵ + ∆2 = w̄ ≤ f(Wt). Hence, (q, ŝ, ŵ + ∆2) ∈ U(Qt, St, It) and

R(Qt, It, ŝ, ŵ+∆2)>R(Qt, It, ŝ, ŵ): The triplet (q, ŝ, ŵ+∆2) is better than the triplet (q, ŝ, ŵ).

(3) Suppose that E(ŝ, ŵ)≥ 0 and −min{CS −St,CC}< ŝ≤ 0: We define ∆3 =min{min{CS −St,CC}/θ+

ŝ/θ, w̄− ŵ}> 0. Since 0<∆3 ≤min{CS −St,CC}/θ+ ŝ/θ, note that −min{CS −St,CC} ≤ ŝ− θ∆3 <

ŝ≤ 0. Also, note that E(ŝ, ŵ) = (ŝ/θ+ ŵ)τ = ((ŝ− θ∆3)/θ+ ŵ+∆3)τ =E(ŝ− θ∆3, ŵ+∆3) and 0≤

ŵ < ŵ+∆3 ≤ w̄ ≤ f(Wt). Hence, (q, ŝ− θ∆3, ŵ+∆3) ∈ U(Qt, St, It) and R(Qt, It, ŝ, ŵ) =R(Qt, It, ŝ−

θ∆3, ŵ+∆3). Then, by Lemma 2,

R(Qt, It, ŝ, ŵ)+E
[
v∗
t+1(q,St− ŝ, It+1)

]
<R(Qt, It, ŝ− θ∆3, ŵ+∆3)+E

[
v∗
t+1(q,St− ŝ+ θ∆3, It+1)

]
.

Thus, the triplet (q, ŝ− θ∆3, ŵ+∆3) is better than the triplet (q, ŝ, ŵ).

(4) Suppose that E(ŝ, ŵ)≥ 0 and ŝ > 0: We define ∆4 =min{γŝ, w̄− ŵ}> 0. Since 0<∆4 ≤ γŝ, note that

0 ≤ ŝ−∆4/γ < ŝ ≤ min{St,CD}. Also, note that E(ŝ, ŵ) = (γŝ+ ŵ)τ = (γ(ŝ−∆4/γ) + ŵ +∆4)τ =

E(ŝ−∆4/γ, ŵ+∆4) and 0≤ ŵ < ŵ+∆4 ≤ w̄≤ f(Wt). Hence, (q, ŝ−∆4/γ, ŵ+∆4)∈U(Qt, St, It) and

R(Qt, It, ŝ, ŵ) =R(Qt, It, ŝ−∆4/γ, ŵ+∆4). Then, by Lemma 2,

R(Qt, It, ŝ, ŵ)+E
[
v∗
t+1(q,St− ŝ, It+1)

]
<R(Qt, It, ŝ−∆4/γ, ŵ+∆4)+E

[
v∗
t+1(q,St− ŝ+∆4/γ, It+1)

]
.

Thus, the triplet (q, ŝ−∆4/γ, ŵ+∆4) is better than the triplet (q, ŝ, ŵ).

Hence we showed that w = w̄. Next, suppose that w = CT +min{CS − St,CC}/θ. We will show that s =

−min{CS − St,CC}. First, assume to the contrary that s > 0. In this case, wτ < (γs + w)τ = E(s,w) ≤

τCT . But this leads to a contradiction since w ≥ CT . Thus s≤ 0. Note that −min{CS − St,CC} ≤ s since

(q, s,w) ∈ U(Qt, St, It). Also, note that (s/θ +CT +min{CS − St,CC}/θ)τ = E(s,w) ≤ τCT , implying that

−min{CS −St,CC} ≥ s. Hence, the only feasible action is s=−min{CS −St,CC}. □
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Proof of Proposition 1. Note that v∗
T (·, ·, IT ) is jointly concave. Assuming v∗

t+1(·, ·, It+1) is jointly concave,

we will prove v∗
t (·, ·, It) is jointly concave. Taking a similar path to that in Zhou et al. (2019), we convert our

problem to an equivalent one with linear constraints. We define the following decision variables:

• sCG
t : The amount of energy charged into the battery from the wind energy generated;

• sCP
t : The amount of energy charged into the battery from the energy purchased;

• sDt : The amount of energy discharged from the battery;

• wC
t : The amount of wind energy generated and charged into the battery; and

• wS
t : The amount of wind energy generated and sold in the market.

We define Γ(Qt, St, It) as the set of decision variable tuples (qt, s
CG
t , sCP

t , sDt ,w
C
t ,w

S
t )∈R×R5

+ that satisfy

−
¯
E ≤ qt ≤ Ē, (EC.3)

wS
t + γsDt ≤CT , (EC.4)

sCP
t /(θτ)≤CT , (EC.5)

sCG
t = θwC

t , (EC.6)

wC
t +wS

t ≤ f(Wt), (EC.7)

sDt ≤min{St,CD}, (EC.8)

sCG
t + sCP

t ≤min{CS −St,CC}, (EC.9)

sCG
t , sCP

t , sDt ,w
C
t ,w

S
t ≥ 0. (EC.10)

Constraint (EC.3) builds upon Lemma 1. Constraints (EC.4) and (EC.5) are the transmission capacity

constraints for selling and buying energy, respectively. Constraint (EC.6) relates the decision wC
t to the

decision sCG
t . Constraint (EC.7) says the wind energy generated is bounded by the available wind potential.

Constraints (EC.8) and (EC.9) are the battery capacity constraints for discharging and charging energy,

respectively. We now consider the following problem:

max
(qt,sCG

t ,sCP
t ,sDt ,wC

t ,wS
t )∈Γ(Qt,St,It)

{
R(Qt, It, (w

S
t + γsDt )τ − sCP

t /(θτ))+E
[
v∗
t+1(qt, St + sCG

t + sCP
t − sDt , It+1)

]}
(EC.11)

where

R(Qt, It, e) =

QtPt +KpPt(e−Qt) if Qt < e,

QtPt−KnPt(Qt− e) if Qt ≥ e.

We show that the above problem is equivalent to ours by constructing an optimal solution to (EC.11) that

satisfies sDt = 0 or sCG
t + sCP

t = 0. Let (q̂, ŝCG, ŝCP , ŝD, ŵC , ŵS) ∈ Γ(Qt, St, It) denote a feasible solution to

(EC.11). We consider the following two cases:

(1) Suppose that ŝD > 0 and ŝCP > 0: We define ∆1 =min{ŝCP , ŝD}> 0. Note that (q̂, ŝCG, ŝCP −∆1, ŝ
D−

∆1, ŵ
C , ŵS)∈ Γ(Qt, St, It) and (ŵS +γ(ŝD−∆1))τ − (ŝCP −∆1)/(θτ)> (ŵS +γŝD)τ − ŝCP/(θτ). Since
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R(Qt, It, ·) is an increasing function, (q̂, ŝCG, ŝCP −∆1, ŝ
D −∆1, ŵ

C , ŵS) yields a larger objective value

to (EC.11) than (q̂, ŝCG, ŝCP , ŝD, ŵC , ŵS). Thus, (q̂, ŝCG, ŝCP , ŝD, ŵC , ŵS) cannot be an optimal solution

to (EC.11) if ŝD > 0 and ŝCP > 0.

(2) Suppose that ŝD > 0, ŝCP = 0, and ŝCG > 0: We define ∆2 = min{ŝCG, ŝD} > 0. Note that (q̂, ŝCG −

∆2, ŝ
CP , ŝD −∆2, ŵ

C −∆2/θ, ŵ
S + γ∆2) ∈ Γ(Qt, St, It) and (ŵS + γ∆2 + γ(ŝD −∆2))τ − ŝCP/(θτ) =

(ŵS + γŝD)τ − ŝCP/(θτ). Thus, if (q̂, ŝCG, ŝCP , ŝD, ŵC , ŵS) is an optimal solution to (EC.11), then

(q̂, ŝCG−∆2, ŝ
CP , ŝD−∆2, ŵ

C−∆2/θ, ŵ
S+γ∆2) is also optimal with ŝCP + ŝCG−∆2 = 0 or ŝD−∆2 = 0

depending on the value of ∆2.

Thus v∗
t (Qt, St, It) equals the optimal objective value of (EC.11). Next, we show that |v∗

t (Qt, St, It)| <∞.

Since −CT ≤ Qt ≤ τCT from Lemma 1 and −CT ≤ E(st,wt) ≤ τCT , |R(Qt, It, st,wt)| ≤ |Pt|CT . Hence,

|v∗
t (Qt, St, It)| ≤

∑T−1
κ=t
|EPκ|It [Pκ]|CT ≤

∑T−1
κ=t

EPκ|It [|Pκ|]CT <∞ since EPκ|It [|Pκ|]<∞, ∀κ∈ T with κ≥ t.

Finally, we define C := {(Qt, St, qt, s
CG
t , sCP

t , sDt ,w
C
t ,w

S
t ) | (Qt, St) ∈ Θ, (qt, s

CG
t , sCP

t , sDt ,w
C
t ,w

S
t ) ∈

Γ(Qt, St, It)} where Θ := {(Qt, St) | −
¯
E ≤ Qt ≤ Ē, 0 ≤ St ≤ CS, (St − CS)/(θτ) ≤ Qt}. Note that C is a

convex set since Θ and Γ(Qt, St, It) are polyhedral and thus convex sets. The objective function of problem

(EC.11) is a concave function on C since v∗
t+1(·, ·, It+1) is jointly concave and R(Qt, It, ·) is concave. Since

v∗
t (Qt, St, It)<∞, Theorem A.4 in Porteus (2002) implies that v∗

t (Qt, St, It) is a concave function on Θ. □

Proof of Theorem 1. Let η∗
t (Qt, St, It) = (q, s,w) denote the optimal action triplet in state (Qt, St, It). We

first characterize the optimal energy storage action. For notational convenience, we suppress the dependency

of Z∗
t on (Qt, St, It). We consider the following three scenarios:

(i) Suppose that CT ≤w. If s > 0, then E(s,w) = (γs+w)τ > τCT . But this leads to a contradiction since

E(s,w)≤ τCT . Thus s≤ 0. Since s/θ+w≤CT , St+θ(w−CT )≤ St−s. We then consider the following

problem:

max
(qt,zt)∈[−

¯
E,Ē]×[St+θ(w−CT ),CS ]

{
R(Qt, It, St− zt,w)+E

[
v∗
t+1(qt, zt, It+1)

]}
.

Since R(Qt, It, St − zt,w) + E
[
v∗
t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), note that (q∗t , z

∗
t ) is a

maximizer of this problem where z∗
t =max{Z∗

t , St + θ(w−CT )}. We consider the following two cases:

• Suppose that St+θ(w−CT )<Z∗
t . Then z∗

t =Z∗
t . Since −τCT ≤ s/θ+w, s≥−θ(τCT +w). Hence,

taking into account the capacity constraints, we obtain s=−min{Z∗
t −St, θ(τCT +w),CC}.

• Suppose that Z∗
t ≤ St + θ(w − CT ). Then z∗

t = St + θ(w − CT ). Recall from Lemma 3 that w =

min{f(Wt),CT +min{CS−St,CC}/θ}. Thus, w≤CT +CC/θ, that is, θ(w−CT )≤CC . Since s < 0,

taking into account the capacity constraints, we obtain s=−min{θ(w−CT ),CC}=−θ(w−CT ).

(ii) Suppose that CT >w and s < 0. We consider the following problem:

max
(qt,zt)∈[−

¯
E,Ē]×[St,CS ]

{
R(Qt, It, St− zt,w)+E

[
v∗
t+1(qt, zt, It+1)

]}
.

Since R(Qt, It, St − zt,w) + E
[
v∗
t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), note that (q∗t , z

∗
t ) is a

maximizer of this problem where z∗
t =max{St,Z

∗
t }. Since −τCT ≤ s/θ+w, s≥−θ(τCT +w). Hence,

taking into account the capacity constraints, we obtain s=−min{Z∗
t −St, θ(τCT +w),CC} if Z∗

t >St.
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(iii) Suppose that CT >w and s≥ 0. We consider the following problem:

max
(qt,zt)∈[−

¯
E,Ē]×[0,St]

{
R(Qt, It, St− zt,w)+E

[
v∗
t+1(qt, zt, It+1)

]}
.

Since R(Qt, It, St − zt,w) + E
[
v∗
t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), note that (q∗t , z

∗
t ) is a

maximizer of this problem where z∗
t =min{Z∗

t , St}. Since γs+w≤CT , s≤ (CT −w)/γ. Hence, taking

into account the capacity constraints, we obtain s=min{St−Z∗
t , (CT −w)/γ,CD} if Z∗

t ≤ St.

We next obtain the optimal energy commitment action from the problem maxqt∈[−
¯
E,Ē]E

[
v∗
t+1(qt, St −

s, It+1)
]
. Since Yt(St− s, It) is a maximizer of this problem, q= Yt(St− s, It). □

Proof of Theorem 2. Let η∗
t (Qt, St, It) = (q, s,w) denote the optimal action triplet in state (Qt, St, It).

We make the following observations in four different scenarios:

(a) Suppose that (Qt, St,Wt) ∈ Λ1. Thus f(Wt) ≥ CT +min{CS − St,CC}/θ. Lemma 3 implies that w =

CT +min{CS −St,CC}/θ and s=−min{CS −St,CC}.

(b) Suppose that (Qt, St,Wt) ∈ Λ2. Thus CT +min{CS − St,CC}/θ > f(Wt)≥ CT . Lemma 3 implies that

w= f(Wt). Note that f(Wt)≥CT ≥Qt/τ if Qt ≥ 0 from Lemma 1, and f(Wt)≥CT ≥ 0> τQt if Qt < 0.

If s > 0, then E(s,w) = (γs+ f(Wt))τ > τCT . But this leads to a contradiction since E(s,w)≤ τCT .

Thus s≤ 0, leading to decision type CS (charge and sell) or CP (charge and purchase).

(c) Suppose that (Qt, St,Wt)∈Λ3. Thus CT > f(Wt). Lemma 3 implies that w= f(Wt).

(d) Suppose that (Qt, St,Wt) ∈Ψ+
1 ∪Ψ−

1 . Thus, letting ¯
s=−min{CS − St,CC}, we have f(Wt)≥Qt/τ −

¯
s/θ if Qt ≥ 0, and f(Wt) ≥ τQt −

¯
s/θ if Qt < 0. Note that f(Wt) ≥ max{Qt/τ, τQt} −

¯
s/θ. If

¯
s ≤

s ≤ 0, then s/θ + f(Wt) ≥ s/θ + max{Qt/τ, τQt} −
¯
s/θ ≥ max{Qt/τ, τQt}. If s > 0 ≥

¯
s, then γs +

f(Wt) > max{Qt/τ, τQt} −
¯
s/θ ≥ max{Qt/τ, τQt}. Thus E(s, f(Wt)) = min{(γs + f(Wt))τ, (s/θ +

f(Wt))τ, (s/θ+f(Wt))/τ} ≥min{max{Qt, τ
2Qt},max{Qt/τ

2,Qt}}=Qt, leading to positive imbalance.

We now formulate the optimal state-dependent target storage levels:

(i) Suppose that (Qt, St,Wt)∈Λ1. Thus s=−min{CS −St,CC} from scenario (a). Hence Z∗
t =CS.

(ii) Suppose that (Qt, St,Wt) ∈ Λ2 ∩ Ψ+
1 . Thus, s ≤ 0 and w = f(Wt) ≥ Qt/τ from sce-

nario (b), and E(s,w) ≥ Qt ≥ 0 from scenario (d). We then consider the problem

max(qt,zt)∈[−
¯
E,Ē]×[St,CS ]

{
R(piCS)(zt, It)+E

[
v∗
t+1(qt, zt, It+1)

]}
. Since R(piCS)(zt, It)+E

[
v∗
t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), Z

∗
t =Z

(piCS)
t if St ≤Z

(piCS)
t and Z∗

t = St otherwise.

(iii) Suppose that (Qt, St,Wt) ∈ Λ2 ∩Ψ−
1 . Thus, s≤ 0 and w = f(Wt) from scenario (b), and E(s,w)≥Qt

from scenario (d). We now consider the following two cases:

• Suppose that s/θ+w> 0. Thus 0≥ s >−θf(Wt). We then consider the following problem:

max
(qt,zt)∈[−

¯
E,Ē]×[St,St+θf(Wt)]

{
R(piCS)(zt, It)+E

[
v∗
t+1(qt, zt, It+1)

]}
.

Since R(piCS)(zt, It) + E
[
v∗
t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), Z

∗
t = St + θf(Wt) if St +

θf(Wt)≤Z
(piCS)
t , Z∗

t =Z
(piCS)
t if St ≤Z

(piCS)
t <St + θf(Wt), and Z∗

t = St otherwise.
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• Suppose that 0≥ s/θ+w. Thus −θf(Wt)≥ s. We then consider the following problem:

max
(qt,zt)∈[−

¯
E,Ē]×[St+θf(Wt),CS ]

{
R(piCP)(zt, It)+E

[
v∗
t+1(qt, zt, It+1)

]}
.

Since R(piCP)(zt, It)+E
[
v∗
t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), Z

∗
t =Z

(piCP)
t if St+ θf(Wt)≤

Z
(piCP)
t and Z∗

t = St + θf(Wt) otherwise.

We obtain the result by combining all of the above observations.

(iv) Suppose that (Qt, St,Wt)∈Λ2 ∩Ψ+
2 . Thus, f(Wt)≥Qt/τ ≥ 0, and s≤ 0 and w= f(Wt) from scenario

(b). We now consider the following three cases:

• Suppose that s/θ + w ≥ Qt/τ > 0. Thus Qt ≤ E(s,w) and 0 ≥ s > −θ(f(Wt)−Qt/τ). We then

consider the following problem:

max
(qt,zt)∈[−

¯
E,Ē]×[St,St+θ(f(Wt)−Qt/τ)]

{
R(piCS)(zt, It)+E

[
v∗
t+1(qt, zt, It+1)

]}
.

Since R(piCS)(zt, It) +E
[
v∗
t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), Z

∗
t = St + θ(f(Wt)−Qt/τ)

if St + θ(f(Wt)−Qt/τ)≤ Z
(piCS)
t , Z∗

t = Z
(piCS)
t if St ≤ Z

(piCS)
t < St + θ(f(Wt)−Qt/τ), and Z∗

t = St

otherwise.

• Suppose that Qt/τ > s/θ+w > 0. Thus Qt >E(s,w) and −θ(f(Wt)−Qt/τ)≥ s >−θf(Wt). We

then consider the following problem:

max
(qt,zt)∈[−

¯
E,Ē]×[St+θ(f(Wt)−Qt/τ),St+θf(Wt)]

{
R(niCS)(zt, It)+E

[
v∗
t+1(qt, zt, It+1)

]}
.

Since R(niCS)(zt, It) + E
[
v∗
t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), Z

∗
t = St + θf(Wt) if St +

θf(Wt) ≤ Z
(niCS)
t , Z∗

t = Z
(niCS)
t if St + θ(f(Wt) − Qt/τ) ≤ Z

(niCS)
t < St + θf(Wt), and Z∗

t = St +

θ(f(Wt)−Qt/τ) otherwise.

• Suppose that 0≥ s/θ+w. Thus Qt ≥ 0≥E(s,w) and −θf(Wt)≥ s. We then consider the following

problem:

max
(qt,zt)∈[−

¯
E,Ē]×[St+θf(Wt),CS ]

{
R(niCP)(zt, It)+E

[
v∗
t+1(qt, zt, It+1)

]}
.

Since R(niCP)(zt, It)+E
[
v∗
t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), Z

∗
t =Z

(niCP)
t if St+ θf(Wt)≤

Z
(niCP)
t and Z∗

t = St + θf(Wt) otherwise.

We obtain the result by combining all of the above observations.

(v) Suppose that (Qt, St,Wt) ∈ Λ2 ∩Ψ−
2 . Thus, Qt < 0, and s≤ 0 and w = f(Wt)≥ 0> τQt from scenario

(b). We now consider the following three cases:

• Suppose that s/θ + w > 0. Thus E(s,w) > 0 ≥ Qt and 0 ≥ s > −θf(Wt). We then consider the

following problem:

max
(qt,zt)∈[−

¯
E,Ē]×[St,St+θf(Wt)]

{
R(piCS)(zt, It)+E

[
v∗
t+1(qt, zt, It+1)

]}
.

Since R(piCS)(zt, It) + E
[
v∗
t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), Z

∗
t = St + θf(Wt) if St +

θf(Wt)≤Z
(piCS)
t , Z∗

t =Z
(piCS)
t if St ≤Z

(piCS)
t <St + θf(Wt), and Z∗

t = St otherwise.
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• Suppose that 0≥ s/θ+w≥ τQt. Thus Qt ≤E(s,w) and −θf(Wt)≥ s≥−θ(f(Wt)−τQt). We then

consider the following problem:

max
(qt,zt)∈[−

¯
E,Ē]×[St+θf(Wt),St+θ(f(Wt)−τQt)]

{
R(piCP)(zt, It)+E

[
v∗
t+1(qt, zt, It+1)

]}
.

Since R(piCP)(zt, It) + E
[
v∗
t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), Z

∗
t = St + θ(f(Wt)− τQt)

if St + θ(f(Wt)− τQt)≤ Z
(piCP)
t , Z∗

t = Z
(piCP)
t if St + θf(Wt)≤ Z

(piCP)
t < St + θ(f(Wt)− τQt), and

Z∗
t = St + θf(Wt) otherwise.

• Suppose that 0≥ τQt > s/θ+w. Thus Qt >E(s,w) and −θ(f(Wt)− τQt)> s. We then consider

the following problem:

max
(qt,zt)∈[−

¯
E,Ē]×[St+θ(f(Wt)−τQt),CS ]

{
R(niCP)(zt, It)+E

[
v∗
t+1(qt, zt, It+1)

]}
.

Since R(niCP)(zt, It)+E
[
v∗
t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), Z

∗
t =Z

(niCP)
t if St+θ(f(Wt)−

τQt)≤Z
(niCP)
t and Z∗

t = St + θ(f(Wt)− τQt) otherwise.

We obtain the result by combining all of the above observations.

(vi) Suppose that (Qt, St,Wt)∈Λ3 ∩Ψ+
1 . Thus, w= f(Wt) and E(s,w)≥Qt ≥ 0 from scenarios (c)–(d).

• Suppose that s≥ 0. We then consider the following problem:

max
(qt,zt)∈[−

¯
E,Ē]×[0,St]

{
R(piDS)(zt, It)+E

[
v∗
t+1(qt, zt, It+1)

]}
.

Since R(piDS)(zt, It) + E
[
v∗
t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), Z

∗
t = St if St ≤ Z

(piDS)
t and

Z∗
t =Z

(piDS)
t otherwise.

• Suppose that s < 0. We then consider the following problem:

max
(qt,zt)∈[−

¯
E,Ē]×[St,CS ]

{
R(piCS)(zt, It)+E

[
v∗
t+1(qt, zt, It+1)

]}
.

Since R(piCS)(zt, It) + E
[
v∗
t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), Z

∗
t = Z

(piCS)
t if St ≤ Z

(piCS)
t

and Z∗
t = St otherwise.

We obtain the result by combining all of the above observations.

(vii) Suppose that (Qt, St,Wt)∈Λ3∩Ψ−
1 . Thus, Qt < 0, w= f(Wt), and E(s,w)≥Qt from scenarios (c)–(d).

• Suppose that s≥ 0. We then consider the following problem:

max
(qt,zt)∈[−

¯
E,Ē]×[0,St]

{
R(piDS)(zt, It)+E

[
v∗
t+1(qt, zt, It+1)

]}
.

Since R(piDS)(zt, It) + E
[
v∗
t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), Z

∗
t = St if St ≤ Z

(piDS)
t and

Z∗
t =Z

(piDS)
t otherwise.

• Suppose that s < 0 and s/θ + w > 0. Thus 0 > s ≥ −θf(Wt). We then consider the following

problem:

max
(qt,zt)∈[−

¯
E,Ē]×[St,St+θf(Wt)]

{
R(piCS)(zt, It)+E

[
v∗
t+1(qt, zt, It+1)

]}
.

Since R(piCS)(zt, It) + E
[
v∗
t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), Z

∗
t = St + θf(Wt) if St +

θf(Wt)≤Z
(piCS)
t , Z∗

t =Z
(piCS)
t if St ≤Z

(piCS)
t <St + θf(Wt), and Z∗

t = St otherwise.
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• Suppose that s < 0 and 0≥ s/θ+w. Thus −θf(Wt)≥ s. We then consider the following problem:

max
(qt,zt)∈[−

¯
E,Ē]×[St+θf(Wt),CS ]

{
R(piCP)(zt, It)+E

[
v∗
t+1(qt, zt, It+1)

]}
.

Since R(piCP)(zt, It)+E
[
v∗
t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), Z

∗
t =Z

(piCP)
t if St+ θf(Wt)≤

Z
(piCP)
t and Z∗

t = St + θf(Wt) otherwise.

We obtain the result by combining all of the above observations.

(viii) Suppose that (Qt, St,Wt)∈Λ3 ∩Ψ+
2 . Thus, f(Wt)≥Qt/τ ≥ 0, and w= f(Wt) from scenario (c).

• Suppose that s≥ 0. Thus Qt ≤E(s,w). We then consider the following problem:

max
(qt,zt)∈[−

¯
E,Ē]×[0,St]

{
R(piDS)(zt, It)+E

[
v∗
t+1(qt, zt, It+1)

]}
.

Since R(piDS)(zt, It) + E
[
v∗
t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), Z

∗
t = St if St ≤ Z

(piDS)
t and

Z∗
t =Z

(piDS)
t otherwise.

• Suppose that s < 0 and s/θ+w≥Qt/τ ≥ 0. Thus Qt ≤E(s,w) and 0> s≥−θ(f(Wt)−Qt/τ). We

then consider the following problem:

max
(qt,zt)∈[−

¯
E,Ē]×[St,St+θ(f(Wt)−Qt/τ)]

{
R(piCS)(zt, It)+E

[
v∗
t+1(qt, zt, It+1)

]}
.

Since R(piCS)(zt, It) +E
[
v∗
t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), Z

∗
t = St + θ(f(Wt)−Qt/τ)

if St + θ(f(Wt)−Qt/τ)≤ Z
(piCS)
t , Z∗

t = Z
(piCS)
t if St ≤ Z

(piCS)
t < St + θ(f(Wt)−Qt/τ), and Z∗

t = St

otherwise.

• Suppose that s < 0 and Qt/τ > s/θ + w ≥ 0. Thus Qt > E(s,w) and −θ(f(Wt) − Qt/τ) > s >

−θf(Wt). We then consider the following problem:

max
(qt,zt)∈[−

¯
E,Ē]×[St+θ(f(Wt)−Qt/τ),St+θf(Wt)]

{
R(niCS)(zt, It)+E

[
v∗
t+1(qt, zt, It+1)

]}
.

Since R(niCS)(zt, It) + E
[
v∗
t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), Z

∗
t = St + θf(Wt) if St +

θf(Wt) ≤ Z
(niCS)
t , Z∗

t = Z
(niCS)
t if St + θ(f(Wt) − Qt/τ) ≤ Z

(niCS)
t < St + θf(Wt), and Z∗

t = St +

θ(f(Wt)−Qt/τ) otherwise.

• Suppose that s < 0 and 0> s/θ+w. Thus Qt ≥ 0>E(s,w) and −θf(Wt)≥ s. We then consider

the following problem:

max
(qt,zt)∈[−

¯
E,Ē]×[St+θf(Wt),CS ]

{
R(niCP)(zt, It)+E

[
v∗
t+1(qt, zt, It+1)

]}
.

Since R(niCP)(zt, It)+E
[
v∗
t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), Z

∗
t =Z

(niCP)
t if St+ θf(Wt)≤

Z
(niCP)
t and Z∗

t = St + θf(Wt) otherwise.

We obtain the result by combining all of the above observations.

(ix) Suppose that (Qt, St,Wt)∈Λ3 ∩Ψ−
2 . Thus, f(Wt)≥ 0> τQt, and w= f(Wt) from scenario (c).
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• Suppose that s≥ 0. Thus Qt < 0≤E(s,w). We then consider the following problem:

max
(qt,zt)∈[−

¯
E,Ē]×[0,St]

{
R(piDS)(zt, It)+E

[
v∗
t+1(qt, zt, It+1)

]}
.

Since R(piDS)(zt, It) + E
[
v∗
t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), Z

∗
t = St if St ≤ Z

(piDS)
t and

Z∗
t =Z

(piDS)
t otherwise.

• Suppose that s < 0 and s/θ+w≥ 0. Thus Qt < 0≤E(s,w) and 0≥ s >−θf(Wt). We then consider

the following problem:

max
(qt,zt)∈[−

¯
E,Ē]×[St,St+θf(Wt)]

{
R(piCS)(zt, It)+E

[
v∗
t+1(qt, zt, It+1)

]}
.

Since R(piCS)(zt, It) + E
[
v∗
t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), Z

∗
t = St + θf(Wt) if St +

θf(Wt)≤Z
(piCS)
t , Z∗

t =Z
(piCS)
t if St ≤Z

(piCS)
t <St + θf(Wt), and Z∗

t = St otherwise.

• Suppose that s < 0 and 0> s/θ+w≥ τQt. ThusQt ≤E(s,w) and−θf(Wt)≥ s≥−θ(f(Wt)−τQt).

We then consider the following problem:

max
(qt,zt)∈[−

¯
E,Ē]×[St+θf(Wt),St+θ(f(Wt)−τQt)]

{
R(piCP)(zt, It)+E

[
v∗
t+1(qt, zt, It+1)

]}
.

Since R(piCP)(zt, It) + E
[
v∗
t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), Z

∗
t = St + θ(f(Wt)− τQt)

if St + θ(f(Wt)− τQt)≤ Z
(piCP)
t , Z∗

t = Z
(piCP)
t if St + θf(Wt)≤ Z

(piCP)
t < St + θ(f(Wt)− τQt), and

Z∗
t = St + θf(Wt) otherwise.

• Suppose that s < 0 and 0> τQt > s/θ+w. Thus Qt >E(s,w) and −θ(f(Wt)− τQt)> s. We then

consider the following problem:

max
(qt,zt)∈[−

¯
E,Ē]×[St+θ(f(Wt)−τQt),CS ]

{
R(niCP)(zt, It)+E

[
v∗
t+1(qt, zt, It+1)

]}
.

Since R(niCP)(zt, It)+E
[
v∗
t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), Z

∗
t =Z

(niCP)
t if St+θ(f(Wt)−

τQt)≤Z
(niCP)
t and Z∗

t = St + θ(f(Wt)− τQt) otherwise.

We obtain the result by combining all of the above observations.

(x) Suppose that (Qt, St,Wt)∈Λ3 ∩Ψ+
3 . Thus, Qt > τf(Wt)≥ 0, and w= f(Wt) from scenario (c).

• Suppose that s ≥ 0 and γs+w ≥ Qt/τ . Thus Qt ≤ E(s,w) and s ≥ (Qt/τ − f(Wt))/γ. We then

consider the following problem:

max
(qt,zt)∈[−

¯
E,Ē]×[0,St−(Qt/τ−f(Wt))/γ]

{
R(piDS)(zt, It)+E

[
v∗
t+1(qt, zt, It+1)

]}
.

Since R(piDS)(zt, It)+E
[
v∗
t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), Z

∗
t = St− (Qt/τ − f(Wt))/γ

if St− (Qt/τ − f(Wt))/γ ≤Z
(piDS)
t and Z∗

t =Z
(piDS)
t otherwise.

• Suppose that s≥ 0 and γs+w<Qt/τ . Thus Qt >E(s,w) and (Qt/τ −f(Wt))/γ > s≥ 0. We then

consider the following problem:

max
(qt,zt)∈[−

¯
E,Ē]×[St−(Qt/τ−f(Wt))/γ,St]

{
R(niDS)(zt, It)+E

[
v∗
t+1(qt, zt, It+1)

]}
.

Since R(niDS)(zt, It)+E
[
v∗
t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), Z

∗
t = St if St ≤Z

(niDS)
t , Z∗

t =

Z
(niDS)
t if St− (Qt/τ − f(Wt))/γ ≤Z

(niDS)
t <St, and Z∗

t = St− (Qt/τ − f(Wt))/γ otherwise.
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• Suppose that s < 0 and s/θ+w≥ 0. Thus, Qt > (s/θ+f(Wt))τ =E(s,w) since f(Wt)<Qt/τ , and

0> s≥−θf(Wt). We then consider the following problem:

max
(qt,zt)∈[−

¯
E,Ē]×[St,St+θf(Wt)]

{
R(niCS)(zt, It)+E

[
v∗
t+1(qt, zt, It+1)

]}
.

Since R(niCS)(zt, It) + E
[
v∗
t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), Z

∗
t = St + θf(Wt) if St +

θf(Wt)≤Z
(niCS)
t , Z∗

t =Z
(niCS)
t if St ≤Z

(niCS)
t <St + θf(Wt), and Z∗

t = St otherwise.

• Suppose that s < 0 and 0> s/θ+w. Thus Qt ≥ 0>E(s,w) and −θf(Wt)> s. We then consider

the following problem:

max
(qt,zt)∈[−

¯
E,Ē]×[St+θf(Wt),CS ]

{
R(niCP)(zt, It)+E

[
v∗
t+1(qt, zt, It+1)

]}
.

Since R(niCP)(zt, It)+E
[
v∗
t+1(qt, zt, It+1)

]
is jointly concave in (qt, zt), Z

∗
t =Z

(niCP)
t if St+ θf(Wt)≤

Z
(niCP)
t and Z∗

t = St + θf(Wt) otherwise.

We obtain the result by combining all of the above observations. □

Proof of Proposition 2. Let u∗
t (qt, zt) =E

[
v∗
t+1(qt, zt, It+1)

]
.

(a) We show that Z
(niCP)
t ≤Z

(piCP)
t : By definition of Z

(ν)
t and Y

(ν)
t , the following inequalities hold.

u∗
t

(
Y

(niCP)
t ,Z

(niCP)
t

)
−KnPtZ

(niCP)
t /(θτ)≥ u∗

t

(
Y

(piCP)
t ,Z

(piCP)
t

)
−KnPtZ

(piCP)
t /(θτ),

u∗
t

(
Y

(piCP)
t ,Z

(piCP)
t

)
−KpPtZ

(piCP)
t /(θτ)≥ u∗

t

(
Y

(niCP)
t ,Z

(niCP)
t

)
−KpPtZ

(niCP)
t /(θτ).

The summation of the above inequalities implies (Kp−Kn)PtZ
(niCP)
t /(θτ)≥ (Kp−Kn)PtZ

(piCP)
t /(θτ). Since

θ > 0, τ > 0, and Kn >Kp, Z
(niCP)
t ≤Z

(piCP)
t . Similarly, we can show that Z

(niCS)
t ≤Z

(piCS)
t and Z

(niDS)
t ≤Z

(piDS)
t .

(b) We show that Z
(niCP)
t ≤Z

(niCS)
t ≤Z

(niDS)
t : By definition of Z

(ν)
t and Y

(ν)
t , the following inequalities hold.

u∗
t

(
Y

(niCP)
t ,Z

(niCP)
t

)
−KnPtZ

(niCP)
t /(θτ)≥ u∗

t

(
Y

(niCS)
t ,Z

(niCS)
t

)
−KnPtZ

(niCS)
t /(θτ),

u∗
t

(
Y

(niCS)
t ,Z

(niCS)
t

)
− τKnPtZ

(niCS)
t /θ≥ u∗

t

(
Y

(niCP)
t ,Z

(niCP)
t

)
− τKnPtZ

(niCP)
t /θ.

The summation of the above inequalities implies KnPt(τ − 1/τ)Z
(niCP)
t /θ ≥ KnPt(τ − 1/τ)Z

(niCS)
t /θ. Since

θ > 0, 1≥ τ > 0, and Kn > 0, Z
(niCP)
t ≤Z

(niCS)
t . By definition of Z

(ν)
t and Y

(ν)
t , the following inequalities hold.

u∗
t

(
Y

(niCS)
t ,Z

(niCS)
t

)
− τKnPtZ

(niCS)
t /θ≥ u∗

t

(
Y

(niDS)
t ,Z

(niDS)
t

)
− τKnPtZ

(niDS)
t /θ,

u∗
t

(
Y

(niDS)
t ,Z

(niDS)
t

)
− γτKnPtZ

(niDS)
t ≥ u∗

t

(
Y

(niCS)
t ,Z

(niCS)
t

)
− γτKnPtZ

(niCS)
t .

The summation of the above inequalities implies τKnPt(γ−1/θ)Z
(niCS)
t ≥ τKnPt(γ−1/θ)Z

(niDS)
t . Since τ > 0,

γ ≤ 1, 1≥ θ > 0, and Kn > 0, Z
(niCS)
t ≤Z

(niDS)
t . Similarly, we can show that Z

(piCP)
t ≤Z

(piCS)
t ≤Z

(piDS)
t . □

The proof of Corollary 1 is available upon request from the authors.
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