Complements and the Addition Rule

1 Finite Cardinality

Let A be an event or set. The number of outcomes in or size of A is denoted $|A|$.

Example 1 Let $A=\{q, w, e, r, t, y\} . \quad|A|=6$.

2 Complements

Let A be any event. Recall that the complement of A, \bar{A} (also A^{c} or A^{\prime}) is the event that A does not occur.

Exercise 1 For each of the following events, describe its complement.

1. When flipping a coin once, a head is observed.
2. When flipping a coin twice, exactly one head is observed.
3. When flipping a coin twice, at least one head is observed.
4. When flipping a coin ten times, at least one head is observed.

Exercise 2 For each of the following determine the number of ways the event can occur and repeat for its complement.

1. When flipping a coin once, a head is observed.
2. When fipping a coin twice, exactly one head is observed.
3. When flipping a coin twice, at least one head is observed.
4. When flipping a coin ten times, at least one head is observed.

Exercise 3 A pair of fair dice is rolled. How many ways can the sum of the dice be less than or equal to 10 ?

3 The Addition Rule

Theorem 1 If A and B are disjoint (mutually exclusive) sets or events then $\mid A$ or $B|=|A|+|B|$.

Example 2 Pick a single card from a deck. How many ways can you select an Ace or an 8?
These are disjoint events. There are four of each rank in a deck of cards. Thus, the number of ways to select an Ace or an 8 is $4+4=8$

Exercise 4 Pick a single card from a deck. How many ways can you select a club or a diamond?

Exercise 5 A study at a local bar found people of various ages playing games. Each patron participates in exactly one game.

	$\mathbf{2 1 - 2 9}$	$\mathbf{3 0 - 3 9}$	$\mathbf{4 0 - 4 9}$	$\mathbf{5 0}$ and older	Total
Darts	4	12	15	6	37
Pool	8	17	16	11	52
Karaoke	17	5	0	1	23
Total	29	34	31	18	112

How many ways can you select a randomly selected person...

1. is playing pool;
2. is $30-39$;
3. is playing pool or singing karaoke;
4. is 21-29 or 40-49.

Exercise 6 A pair of fair dice is rolled. How many ways can the sum of the dice be 4 or 5 ?

Exercise 7 A pair of fair dice is rolled. How many ways can the sum of the dice be at least 10?

Of course there are times when we want to determine $\mid A$ or $B \mid$ when A and B are not disjoint. In such a case we must employ the general addition rule.

4 The General Addition Rule

For any events A and $B, \mid A$ or $B|=|A|+|B|-| A$ and $B \mid$.
Example 3 A card is selected at random. How many ways can the card be a club or a 3?

Exercise 8 A card is selected at random. How many ways can it be a face card or a heart?

Exercise 9 Roll a pair of dice. How many ways can

1. the sum be 7 or 8 ;
2. the sum be 5 or a 2 appears on at least one die.

Exercise 10 A study at a local bar found people of various ages playing games.

	$\mathbf{2 1 - 2 9}$	$\mathbf{3 0 - 3 9}$	$\mathbf{4 0 - 4 9}$	$\mathbf{5 0}$ and older	Total
Darts	4	12	15	6	37
Pool	8	17	16	11	52
Karaoke	17	5	0	1	23
Total	29	34	31	18	112

How many ways is a randomly selected person...

1. playing pool or darts;
2. 30-39 or throwing darts;
3. playing pool or 50 and older;
4. 21-29 or singing Karaoke.

5 Exercises

1. Grimaldi page $11: 1,3-13,15,19,29,30$
