
1 Combinatorial Proofs

The binomial coe¢ cient is introduced as the number of ways of choosing
k distinct objects as a subset from n distinct objects. Many relationships ex-
ist between binomial coe¢ cients and these results were proven using algebraic
methods. These algebraic manipulations did not motivate us as to why anyone
would have thought of these relationships in the �rst place. The algebraic ma-
nipulations just pushed symbols around without appealing to their underlying
structure as a counting tool.

In contrast, the combinatorial proof is based on the concept that there
is fundamentally more to the truth of an equation than just the algebraic manip-
ulation of symbols. The relationship expressed by the equation exists because
some set S has been counted in two di¤erent ways. Since the number of objects
in the set S remains constant, the two di¤erent methods used must produce
equal results. The beauty, richness and elegance of the combinatorial proof lies
in understanding why two quantities are equal. Such understanding is lacking
in algebraic manipulations.
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Proof. Let S be the collection of all k element subsets of an n element set.
One the one hand the de�nition of the binomial coe¢ cient gives the number of
elements in S as
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. On the other hand, from the n elements select n � k

elements to not appear. The remaining k elements form the desired k element
subset. Note that each di¤erent set of n � k elements produces a di¤erent k
element subset. Both approaches count the same set S and must be equal.

Of course it can be di¢ cult determining the set that is counted in two dif-
ferent ways. One strategy is to look at the simpler side of the equation to help
formulate the set. Consider
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of the equation we need to let S be the collection of all k element subsets of
an n element set. Since this is the same set we used to show
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must be the alternate way of counting that provides the right hand side of the
equation. Analysis indicates that the selections are made from a smaller set
than the original n elements. In this theorem, it appears that a single element
is excluded.

Theorem 2
�
n
k

�
=
�
n�1
k�1
�
+
�
n�1
k

�
Proof. Let S be the collection of all k element subsets of an n element set. One
the one hand the de�nition of the binomial coe¢ cient gives this as jSj =
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On the other hand, partition the k element subsets into two disjoint cases based
on a speci�c element x. Case 1 counts those k element subsets that contain the
element x. Since x is included in the subset, select the other k � 1 elements
for the subset from the remaining n � 1 elements. This can be done in

�
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ways. Case 2 counts those k element subsets that do not contain the element x.
Because x is not included in the k element subset we must select all elements
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from the remaining n � 1 objects. This can be done in
�
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cases are disjoint and contain all possible k element subsets so the sum rule
applies and jSj =
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: Both approaches count the size of the same

set S and equality follows.
As the identities become more complex, more notation and explicit

construction of sets may be needed for clarity.

Theorem 3 For all non-negative integers n,
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Proof. Let A = f1; 2; :::; n � 1; n; n + 1; :::; 2ng and partition A into the two
subsets B = f1; 2; :::; ng and C = fn+ 1; n+ 2; :::; 2ng. Let S be the collection
of all two element subsets of A. Immediately we see that jSj =

�
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�
. On the

other hand we can think of selection two elements from A in terms of its subsets
B and C. Three possibilities exist. Both elements could be selected from B
in
�
n
2

�
ways. Similarly, both elements could be selected from C in
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�
ways.

Finally we might select one element from each of B and C. This selection
could be made in n � n = n2 ways. These three ways cover all selections of two
elements from A based on its partitioning into B and C. Thus, jSj = 2
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All theorems with identities involving a sum should be broken down
into disjoint cases and an application of the sum rule be applied. What about
an identity that involves a product? The multiplication rule will need to be
invoked and the set to be counted in two di¤erent ways must be ordered.

Theorem 4 For all non-negative integers n and k,
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Proof. Here we are looking at nested subsets. A = f1; 2; :::; ng. Let S be a
collection of ordered pairs (B;C) such that B is a subset of A, C is a subset of
B, jBj = k and jCj = 2. On the one hand, the size of S can be determined by
�rst selecting B and then selecting C. With no restrictions, B can be selected
in
�
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k

�
ways. Now C must be selected from the k elements of B which can be

done in
�
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�
ways. Hence, there are
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one hand, the size of S can also be determined by �rst selecting C and then
building B up from C. With no restrictions, C can be selected in
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Now, B must be built up from C. The set B needs k � 2 additional elements
from the remaining n� 2 original elements. So, B can now be selected in
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ways. Thus, the size of S is also
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Let�s return to the Binomial Theorem. The most intuitive proof of the
Binomial Theorem is combinatorial.

Theorem 5 For any real values x and y and non-negative integer n, (x+ y)n =
nP
k=0
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Proof. Each term in the expansion of (x+ y)n will be of the form kix
iyn�i

where ki is some coe¢ cient. How often the expansion of (x+ y)
n yield an xiyn�i
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term? Exactly i of the x terms must be selected from the n products of x+ y.
Of course, this automatically determines which of the y terms will be selected.
The selection of the x terms can be done in
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�
ways. Hence, ki =
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Theorem 6
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Prove each of the following for all non-negative integer values (unless other-
wise stated) using a combinatorial proof.
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That is, generalize Theorem 4.

Exercise 16 n3 = 3!
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1This is no surprise. After all, if
�n
k

�
is called the binomial coe¢ cient then it had better

be the coe¢ cient of something.
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